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an advertisement

A short state of art on Multi-Leader-Follower games, D.A. and

A. Svensson, in a book dedicated to Stackelberg, editors A.

Zemkoho and S. Dempe, Springer Ed. (2019)
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Bilevel: some general comments
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BL: a �rst de�nition

A Bilevel Problem consists in an upper-level/leader's
problem

�minx∈Rn� F (x, y)

s.t.

{
x ∈ X
y ∈ S(x)

where ∅ 6= X ⊂ Rn and S(x) stands for the solution set of its

lower-level/follower's problem

miny∈Rm f(x, y)
s.t g(x, y) ≤ 0
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A trivial example

Consider the following simple bilevel problem

�minx∈R� x

s.t.

{
x ∈ [−1, 1]
y ∈ S(x)

with S(x) = �y solving

miny∈R −xy
s.t x2(y2 − 1) ≤ 0 �
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A trivial example

Lower level problem:

miny∈R −x.y
s.t x2(y2 − 1) ≤ 0 �

Note that the solution map of this convex problem is

S(x) :=

 {1} x < 0
{−1} x > 0
R x = 0

Thus for each x 6= 0 there is a unique associated solution of the lower

level problem
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A trivial example

Lower level problem:

miny∈R −xy
s.t x2(y2 − 1) ≤ 0 �

Note that the solution map of this convex problem is

y

x

−∇F
−1

1
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A trivial example

Consider the following simple bilevel problem

�minx∈R� −x.y
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Ambiguity: Optimistic approach

An Optimistic Bilevel Problem consists in an

upper-level/leader's problem

minx∈Rn miny∈Rm F (x, y)

s.t.

{
x ∈ X
y ∈ S(x)

where ∅ 6= X ⊂ Rn and S(x) stands for the solution set of its

lower-level/follower's problem

miny∈Rm f(x, y)
s.t g(x, y) ≤ 0
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Ambiguity: Pessimistic approach

An Pessimistic Bilevel Problem consists in an

upper-level/leader's problem

minx∈Rn maxy∈Rm F (x, y)

s.t.

{
x ∈ X
y ∈ S(x)

where ∅ 6= X ⊂ Rn and S(x) stands for the solution set of its

lower-level/follower's problem

miny∈Rm f(x, y)
s.t g(x, y) ≤ 0
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Ambiguity: the most simple

And of course the "confortable situation" corresponds to the

case of a unique response

∀x ∈ X, S(x) = {y(x)}.

Then

minx∈Rn F (x, y(x))
s.t.

{
x ∈ X

For example when

for any x, g(x, ·) is quasiconvex and f(x, ·) is strictly convex.
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Ambiguity: Selection approach

An "Selection-type" Bilevel Problem consists in an

upper-level/leader's problem

minx∈Rn F (x, y(x))

s.t.

{
x ∈ X
y(x) is a uniquely determined selection of S(x)

J. Escobar & A. Jofré, Equilibrium Analysis of Electricity

Auctions (2011)
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Ambiguity: The new probabilistic approach

In one of the Elevator pitches (Monday), D.Salas and A.

Svensson proposed a probabilistic approach:

Consider a probability on the di�erent possible follower's

reactions

Minimize the expectation of the leader(s)
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An alternative point of view

Instead of considering the previous (optimistic) formulation of BL:

minx∈Rn miny∈Rm F (x, y)

s.t.

{
x ∈ X
y ∈ S(x)

one can de�ne the (optimistic) value function

ϕmin(x) = min
y
{F (x, y) : g(x, y) ≤ 0} (1)

and the Bl problem becomes

minx∈Rn ϕmin(x)
s.t. x ∈ X
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An alternative point of view

Instead of considering the previous (pessimistic) formulation of BL:

minx∈Rn maxy∈Rm F (x, y)

s.t.

{
x ∈ X
y ∈ S(x)

one can de�ne the (pessimistic) value function

ϕmax(x) = max
y
{F (x, y) : g(x, y) ≤ 0} (2)

and the Bl problem becomes

minx∈Rn ϕmax(x)
s.t. x ∈ X
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An alternative point of view

This is the point of view presented in Stephan Dempe's book:

minx∈Rn min /maxy∈Rm F (x, y)

s.t.

{
x ∈ X
y ∈ S(x)

vs
minx∈Rn ϕmin/max(x)

s.t. x ∈ X

It immediately raises the question

What is a solution??

an optimal x = leader's optimal strategy?

an optimal couple (x, y) = couple of strategies of leader and
follower?
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Real life...

Actually usually when considering BL

minx∈Rn miny∈Rm F (x, y)

s.t.

{
x ∈ X
y ∈ S(x)

people say

Step A: the leader plays �rst

Step B: the follower reacts

But in real life it's a little bit more complex....
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Real life...

Actually in real life, when considering BL

minx∈Rn miny∈Rm F (x, y)

s.t.

{
x ∈ X
y ∈ S(x)

We only work for the leader!!

Indeed

the leader has a model of the follower's reaction: optimistic or
pessimistic and

Step 1: we compute a solution x or (x, y) of the BL model

Step 2: the leader plays x

Step 3: the follower decides to play...whatever he wants!!!
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An existence result (optimistic)

De�nition

The Mangasarian-Fromovitz constraint quali�cation (MFCQ) is
satis�ed at (x, y) with y feasible point of the problem

min
y
{f(x, y) : g(x, y) ≤ 0}

if the system

∇ygi(x, y)d < 0 ∀ i ∈ I(x, y) := {j : gj(x, y) = 0}

has a solution.
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An existence result (cont.)

Assume that X = {x ∈ Rn : G(x) ≤ 0}

Theorem (Bank, Guddat, Klatte, Kummer, Tammer (83))

Let x with G(x) ≤ 0 be �xed.

the set {(x, y) : g(x, y) ≤ 0} is not empty and compact;

at each point (x, y) ∈ gphS with G(x) ≤ 0, assumption (MFCQ)
is satis�ed;

then, the set-valued map S(·) is upper semicontinuous at (x, y) and
the function ϕo(·) is continuous at x.
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An existence result (cont.)

Theorem

Assume that

the set {(x, y) : g(x, y) ≤ 0} is not empty and compact;

at each point (x, y) ∈ gphS with G(x) ≤ 0, assumptions
(MFCQ) is satis�ed;

the set {x : G(x) ≤ 0} is not empty and compact,

then optimistic bilevel problem has a (global) optimal solution.
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Bilevel problems and MPCC reformulation
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We consider a Bilevel Problem consisting in an upper-level /
leader's problem

� min
x∈Rn

� F (x, y)

s.t. y ∈ S(x), x ∈ X

where ∅ 6= X ⊂ Rn, and S(x) stands for the solution of its

lower-level / follower's problem

min
y∈Rm

f(x, y)

s.t g(x, y) ≤ 0

which we assume to be convex and smooth, i.e. ∀x ∈ X, the
functions f(x, ·) and gi(x, ·) are smooth convex functions, and

the gradients ∇ygi,∇yf are continuous, i = 1, ..., p.
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MPCC reformulation

Replacing the lower-level problem by its KKT conditions, gives place
to a Mathematical Program with Complementarity Constraints.

Bilevel

�min
x∈X

�F (x, y)

s.t. y ∈ S(x)

with S(x) = �y solving

min
y∈Rm

f(x, y)

s.t g(x, y) ≤ 0 �

MPCC

�min
x∈X

�F (x, y)

s.t. (y, u) ∈ KKT (x)

with KKT (x) = �(y, u) solving

{
∇yf(x, y) + uT∇yg(x, y) = 0

0 ≤ u ⊥ −g(x, y) ≥ 0 �

We write Λ(x, y) for the set of u satisfying (y, u) ∈ KKT (x).
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Example 1

Consider the following Bilevel problem and its MPCC reformulation

Bilevel

� min
x∈[−1,1]

� x

s.t. y ∈ S(x)

with S(x) = �y solving

min
y∈R

xy

s.t x2(y2 − 1) ≤ 0 �

MPCC

� min
x∈[−1,1]

� x

s.t. (y, u) ∈ KKT (x)

with KKT (x) = �(y, u) solving

{
x + u · 2yx2 = 0
0 ≤ u ⊥ −x2(y2 − 1) ≥ 0 �

1 (0,−1, u) is a local solution of �MPCC�, for any u ∈ Λ(0,−1) = R+

2 (0,−1) is NOT a local solution of �Bilevel�
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x

y

u
KKT (·)

−∇F

(a) (0,−1, u) is a
local solution of
MPCC, ∀u ∈ R+.

y

x

−∇F
−1

1

S(·)

(b) (0,−1) isn't a
local solution of the
Bilevel problem.

Didier Aussel
Bilevel Problems, MPCCs, and Multi-Leader-Follower Games



Optimistic and Pessimistic approaches

The optimistic Bilevel (OB) is

min
x

min
y

F (x, y)

s.t. y ∈ S(x), x ∈ X.

The pessimistic Bilevel (PB) is

min
x

max
y

F (x, y)

s.t. y ∈ S(x), x ∈ X.

The optimistic MPCC (OMPCC):

min
x

min
y

F (x, y)

s.t. (y, u) ∈ KKT (x), x ∈ X.

The pessimistic MPCC (PMPCC):

min
x

max
y

F (x, y)

s.t. (y, u) ∈ KKT (x), x ∈ X.
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Optimistic approach
Is bilevel programming a special case of a MPCC?

S. Dempe -J. Dutta (2012 Math. Prog.)

min
x

min
y
F (x, y)

s.t. y ∈ S(x), x ∈ X.
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Local solutions for in optimistic approach

De�nition

A local (resp. global) solution of (OB) is a point

(x̄, ȳ) ∈ Gr(S) if there exists U ∈ N (x̄, ȳ) (resp. U = Rn × Rm)
such that

F (x̄, ȳ) ≤ F (x, y), ∀(x, y) ∈ U ∩Gr(S).

De�nition

A local (resp. global) solution for (OMPCC) is a triplet

(x̄, ȳ, ū) ∈ Gr(KKT ) such that there exists U ∈ N (x̄, ȳ, ū)
(resp. U = Rn × Rm × Rp) with

F (x̄, ȳ) ≤ F (x, y), ∀(x, y, u) ∈ U ∩Gr(KKT ).
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Results for the optimistic case

In Dempe-Dutta it was considered the Slater type constraint

quali�cation for a parameter x ∈ X:

Slater: ∃y(x) ∈ Rm s.t. gi(x, y(x)) < 0, ∀i = 1, .., p.
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Results for the optimistic case

Theorem 1 Dempe-Dutta (2012)

Assume the convexity condition and Slater's CQ at x̄.

1 If (x̄, ȳ) is a local solution for (OB), then for each

ū ∈ Λ(x̄, ȳ), (x̄, ȳ, ū) is a local solution for (OMPCC).

2 Conversely, assume that Slater's CQ holds on a

neighbourhood of x̄, Λ(x̄, ȳ) 6= ∅, and (x̄, ȳ, u) is a local

solution of (OMPCC) for every u ∈ Λ(x̄, ȳ). Then (x̄, ȳ) is a
local solution of (OB).
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Under the convexity assumption and some CQ ensuring KKT (x) 6= ∅,
∀x ∈ X:

(x̄, ȳ, ū) sol

of (OMPCC)

(x̄, ȳ) sol

of (OB)

∀ū ∈ Λ(x̄, ȳ)

Figure: Global solution comparison in optimistic approach

(x̄, ȳ) local

sol of (OB)

∀ū ∈ Λ(x̄, ȳ),

(x̄, ȳ, ū)

local sol of

(OMPCC)if Slater's CQ

holds around x̄

Figure: Local solution comparison in optimistic approach

Didier Aussel
Bilevel Problems, MPCCs, and Multi-Leader-Follower Games



Example 1 (optimistic)

Consider the following optimistic Bilevel problem

min
x∈[−1,1]

min
y
x

s.t. y ∈ S(x), x ∈ R

with lower-level

min
y
− xy

s.t x2(y2 − 1) ≤ 0.

1 (0,−1, u) is a local solution of (OMPCC), for any

u ∈ Λ(0,−1) = R+

2 (0,−1) is NOT a local solution of (OB).
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Pessimistic Approach
Is bilevel programming a special case of a (MPCC)?

Aussel - Svensson (2019 - J. Optim. Theory Appl.)

min
x

max
y

F (x, y)

s.t. y ∈ S(x), x ∈ X.
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De�nition

A pair (x̄, ȳ) is said to be a local (resp. global) solution for (PB),

if (x̄, ȳ) ∈ Gr(Sp) and ∃U ∈ N (x̄, ȳ) such that

F (x̄, ȳ) ≤ F (x, y), ∀(x, y) ∈ U ∩Gr(Sp). (3)

where Sp(x) := argmaxy {F (x, y) | y ∈ S(x)} .

De�nition

A triplet (x̄, ȳ, ū) is said to be a local (resp. global) solution for

(PMPCC), if (x̄, ȳ, ū) ∈ Gr(KKTp) and ∃U ∈ N (x̄, ȳ, ū) such
that

F (x̄, ȳ) ≤ F (x, y), ∀(x, y, u) ∈ U ∩Gr(KKTp). (4)

where KKTp(x) := argmaxy,u {F (x, y) | (y, u) ∈ KKT (x)} .
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Results for the pessimistic case

Theorem 2

Assume the convexity condition and that KKT (x) 6= ∅, ∀x ∈ X.

1 If (x̄, ȳ) is a local solution for (PB), then for each

ū ∈ Λ(x̄, ȳ), (x̄, ȳ, ū) is a local solution for (PMPCC).
2 Conversely, assume that one of the following condition are

satis�ed:

1 The multifunction KKTp is LSC around (x̄, ȳ, ū) and
(x̄, ȳ, ū) is a local solution of (PB).

2 Slater's CQ holds on a neighbourhood of x̄, Λ(x̄, ȳ) 6= ∅, and
for every u ∈ Λ(x̄, ȳ), (x̄, ȳ, u) is a local solution of
(PMPCC).

Then (x̄, ȳ) is a local solution of (PB).
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Example 1 (pessimistic)

Consider the following pessimistic Bilevel problem

min
x∈[−1,1]

max
y

x

s.t. y ∈ S(x), x ∈ R

with lower-level

min
y
− xy

s.t x2(y2 − 1) ≤ 0.

1 (0,−1, u) is a local solution of (PMPCC), for any

u ∈ Λ(0,−1) = R+

2 (0,−1) is NOT a local solution of (PB).
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Example 2

Consider the following Bilevel problem

� min
x

�x

s.t. y ∈ S(x)

with S(x) the solution of the lower-level problem

min
y
{−y | x+ y ≤ 0, y ≤ 0}

Even though Slater's CQ holds, we have

1 (0, 0, u1, u2) with (u1, u2) ∈ Λ(0, 0) = {(λ, 1− λ) | λ ∈ [0, 1]} is a
local solution of �(MPCC)�, i� u1 6= 0,

2 (0, 0) is NOT a local solution for �(B)�.
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Under the convexity assumption and some (CQ) ensuring KKT (x) 6= ∅,
∀x ∈ X:

(x̄, ȳ, ū) sol

of (PMPCC)

(x̄, ȳ) sol

of (PB)

∀ū ∈ Λ(x̄, ȳ)

Figure: Global solution comparison in pessimistic approach

(x̄, ȳ) local

sol of (PB)

∀ū ∈ Λ(x̄, ȳ),

(x̄, ȳ, ū)

local sol of

(PMPCC)Slater's CQ for

all x around x̄

Figure: Local solutions comparison in pessimistic approach
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An introduction to MLFG
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Notations and de�nitions: Nash problems

A Nash equilibrium problem is a noncooperative game in
which the decision function (cost/bene�t) of each player
depends on the decision of the other players.

Denote by N the number of players and each player i controls
variables xi ∈ Rni . The �total strategy vector� is x which will be often
denoted by

x = (xi, x−i).

where x−i is the strategy vector of the other players.
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Nash Equilibrium Problem (NEP)

The strategy of player i belongs to a strategy set

xi ∈ Xi

Given the strategies x−i of the other players, the aim of player i
is to choose a strategy xi solving

Pi(x
−i) max θi(x

i, x−i)

s.t. xi ∈ Xi

where θi(·, x−i) : Rni → R is the decision function for player i.

A vector x̄ is a Nash Equilibrium if

for any i, x̄i solves Pi(x̄
−i).
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Generalized Nash Equilibrium Problem

A generalized Nash equilibrium problem (GNEP) is a
noncooperative game in which the decision function and

strategy set of each player depend on the decision of the other
players.

The strategy of player i belongs to a strategy set

x
i ∈ Xi(x

−i
)

which depends on the decision variables of the other players.

Given the strategies x−i of the other players, the aim of player i is to choose a strategy

xi solving

Pi(x
−i) max θi(x

i, x−i)

s.t. xi ∈ Xi(x−i)

where θi(·, x−i) : Rni → R is the decision function for player i.

A vector x̄ is a Generalized Nash Equilibrium if

for any i, x̄
i

solves Pi(x̄
−i

).
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General model

Generalized Nash game (GNEP):

min
x1

θ1(x)

s.t.
{
x1 ∈ X1(x−1)

. . .
min

xn
θn(x)

s.t.
{
xn ∈ Xn(x−n)
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A classical existence result

Theorem (Ichiishi-Quinzii 1983)

Let a GNEP be given and suppose that

1 For each ν = 1, ..., N there exist a nonempty, convex and

compact set Kν ⊂ Rnν such that the point-to-set map

Xν : K−ν ⇒ Kν , is both upper and lower semicontinuous

with nonempty closed and convex values, where

K−ν :=
∏
ν′ 6=ν Kν .

2 For every player ν, the function θν is continuous and

θν(·, x−ν) is quasi-convex on Xν(x−ν).

Then a generalized Nash equilibrium exists.

Note that in Aussel-Dutta (2008) an alternative proof of

existence of equilibria has been given, under the assumption of

the Rosen's law, by using the normal approach technique.
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Structure of the set of GNEPs

Example

Let x = (x1, x2) ∈ [0, 4]2 and fν(x) := dTν (x)2, where T1 is the
triangle with vertices (0, 0), (0, 4) and (1, 2), and T2 is the triangle
whose vertices are (0, 0), (4, 0) and (2, 1). Let
Sν(x−ν) := argminxν

{
fν(x1, x2) | xν ∈ [0, 4]

}
. We see that

S1(x2) =
{
x1 ∈ [0, 4] | (x1, x2) ∈ T1

}
for x2 ∈ [0, 1]

S1(x2) = {2} for all x2 ∈ (1, 4])

S2(x1) =
{
x2 ∈ [0, 4] | (x1, x2) ∈ T2

}
for x1 ∈ [0, 1]

S2(x1) = {2} for all x1 ∈ (1, 4]).
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Structure of the set of GNEPs (cont.)

x1

x2

S1(·)

S2(·)
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A particular case

Multi-Leader-Follower-Game (MLFG):

min
x1
y1,..,yp

θ1(x, y)

s.t.

{
x1 ∈ X1(x−1)
y ∈ Y (x)

. . .

min
xn
y1,..,yp

θn(x, y)

s.t.

{
xn ∈ Xn(x−n)
y ∈ Y (x)

↓↑ ↓↑

miny1,..,yp φ1(x, y)
s.t.

{
y ∈ Y (x)

. . .
miny1,..,yp φp(x, y)

s.t.
{
y ∈ Y (x)
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and another problem

Single-Leader-Multi-Follower-Game (SLMFG):

min
x
y1,..,yp

θ1(x, y)

s.t.

{
x ∈ X
y ∈ Y (x)

↓↑

miny1,..,yp φ1(x, y)

s.t.
{
y ∈ Y (x)

. . .
miny1,..,yp φp(x, y)

s.t.
{
y ∈ Y (x)
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A particular case

Multi-Leader-Single-Follower-Game (MLSFG):

min
x1
y1,..,yp

θ1(x, y)

s.t.

{
x1 ∈ X1(x−1)
y ∈ Y (x)

. . .

min
xn
y1,..,yp

θn(x, y)

s.t.

{
xn ∈ Xn(x−n)
y ∈ Y (x)

↓↑

miny1,..,yp φ1(x, y)
s.t.

{
y ∈ Y (x)
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MLSF game: ill-posedness

minx1,y θ1(x1, x2, y) = x1.y

s.t.

{
x1 ∈ [0, 1]
y ∈ S(x1, x2)

minx2,y θ1(x1, x2, y) = −x2.y

s.t.

{
x2 ∈ [0, 1]
y ∈ S(x1, x2)

with

miny f(x1, x2, y) = 1
3y

3 − (x1 + x2)2y

s.t. y ∈ R

Exercise: Please analyse this small example...
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MLSF game: ill-posedness

The follower problem �rst

miny f(x1, x2, y) = 1
3y

3 − (x1 + x2)2y

s.t. y ∈ R

The solution map of this follower problem is

S(x1, x2) = {y1 = x1 + x2, y2 = −x1 − x2}.
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MLSF game: ill-posedness

The solution map of this follower problem is

S(x1, x2) = {y1 = x1 + x2, y2 = −x1 − x2}.

The leader 1 problem

θ1(x, y) = x1.y =

{
x21 + x1.x2 if y = y1
−x21 − x1.x2 if y = y2

Thus the response function of player 1 is

R1(x2) =

{
{0} if y = y1 with a payo� = 0
{1} if y = y2 with a payo� = −1− x2
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MLSF game: ill-posedness

The solution map of this follower problem is

S(x1, x2) = {y1 = x1 + x2, y2 = −x1 − x2}.

The leader 2 problem

θ1(x, y) = −x2.y =

{
−x21 − x1.x2 if y = y1
x21 + x1.x2 if y = y2

Thus the response function of player 1 is

R2(x1) =

{
{1} if y = y1 with a payo� = −1− x1
{0} if y = y2 with a payo� = 0
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MLSF game: ill-posedness

R1(x2) =

{
{(0, y = y1)} with a payo� = 0
{(1, y = y2)} with a payo� = −1− x2

R2(x1) =

{
{(1, y = y1)} with a payo� = −1− x1
{(0, y = y2)} with a payo� = 0

So the Nash equilibrium will be (x1, x2) = (1, 1) but....
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A �nal model

For the Demand-side management, we recently introduced the
Multi-Leader-Disjoint-Follower game
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Just one example [Pang-Fukushima 05]

Let us consider a 2-leader-single-follower game:

minx1,y
1
2
x1 + y minx2,y − 1

2
x2 − y{

x1 ∈ [0, 1]
y ∈ S(x1, x2)

{
x2 ∈ [0, 1]
y ∈ S(x1, x2)

where S(x1, x2) is the solution map of

miny≥0 y(−1 + x1 + x2) +
1

2
y2
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1
2
x1 + y1 minx2,y2 − 1

2
x2 − y2{

x1 ∈ [0, 1]
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Actually S(x1, x2) = max{0, 1− x1 − x2} thus the problem becomes

minx1,y1
1
2
x1 + y1 minx2,y2 − 1

2
x2 − y2{

x1 ∈ [0, 1]
y1 = max{0, 1− x1 − x2}

{
x2 ∈ [0, 1]
y2 = max{0, 1− x1 − x2}

Then the Response maps are

R1(x2) = {1− x2} and R2(x1) =


{0} x1 ∈ [0, 1

2
[

{0, 1} x1 = 1
2

{1} x1 ∈] 1
2
, 1]

and thus there is no Nash equilibrium.......
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But let us consider the slightly modi�ed problem.......

minx1,y1
1
2
x1 + y1 minx2,y2 − 1

2
x2 − y2 x1 ∈ [0, 1]

y1 = max{0, 1− x1 − x2}
y2 = max{0, 1− x1 − x2}

 x2 ∈ [0, 1]
y1 = max{0, 1− x1 − x2}
y2 = max{0, 1− x1 − x2}

that can be proved to have a (unique) Nash equilibrium namely

(x1, x2) = (0, 1) with y1 = y2 = 0!!!!
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The kind of �trick� is called �All Equilibrium approach� and has been
introduced in A.A. Kulkarni & U.V. Shanbhag, A Shared-Constraint
Approach to Multi-Leader Multi-Follower Games, Set-Valued Var. Anal
(2014).

They proved that every Nash equilibirum (initial problem) is a Nash
equilibrium for the �all equilibrium� formulation.

It corresponds to the case where each leader takes into account the

conjectures regarding the follower decision made by all other leaders....
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Some motivation examples

Electricity markets
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A short introduction to electricity markets
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A short introduction to electricity markets (cont.)

Volume of exchanges

Bid schedule of the spot market
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A short introduction to electricity markets (cont.)

Volume of exchanges

Bid schedule of the spot market
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Modeling an Electricity Markets

electricity market consists of

i) generators/consumers i ∈ N respect their own interests in
competition with others

ii) market operator (ISO) who maintain energy generation and
load balance, and protect public welfare

the ISO has to consider:

ii) quantities qi of generated/consumed electricity
iii) electricity dispatch te with respect to transmission

capacities

since 1990s, Generalized Nash equilibrium problem is the most
popular way of modeling spot electricity markets or, more precisely,
Multi-leader-common-follower game
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Multi-Leader-Common-Follower game
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Multi-Leader-Common-Follower game

A classical problem (of a producer) is the best response search
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Models with linear unit bid functions

Electricity markets without transmission losses:

X. Hu & D. Ralph, Using EPECs to Model Bilevel Games in
Restructured Electricity Markets with Locational Prices, Operations
Research (2007). bid-on-a-only

Electricity markets with transmission losses:

Henrion, R., Outrata, J. & Surowiec, T., Analysis of
M-stationary points to an EPEC modeling oligopolistic
competition in an electricity spot market, ESAIM: COCV
(2012). M-stationary points
D. A., R. Correa & M. Marechal Spot electricity market
with transmission losses, J. Industrial Manag. Optim
(2013). existence of Nash equil., case of a two island model
D.A., M. Cervinka & M. Marechal, Deregulated electricity
markets with thermal losses and production bounds,
RAIRO (2016) production bounds, well-posedness of model
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Some references on the topic (cont.)

Best response in electricity markets:

E. Anderson and A. Philpott, Optimal O�er Construction
in Electricity Markets, Mathematics of Operations Research
(2002). Linear bid function - necessary optimality cond. for
local best response in time dependent case
D. Aussel, P. Bendotti and M. Pi²t¥k, Nash Equilibrium in
Pay-as-bid Electricity Market : Part 2 - Best Response of
Producer, Optimization (2017) linear unit bid function,
explicit formula for best response

Explicit formula for equilibria

D. Aussel, P. Bendotti and M. Pi²t¥k, Nash Equilibrium in Pay-as-bid
Electricity Market : Part 1 - Existence and Characterisation,
Optimization (2017) explicit formula for equilibria
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Some references on the topic (cont.)

Best response in electricity markets:

E. Anderson and A. Philpott, Optimal O�er Construction
in Electricity Markets, Mathematics of Operations Research
(2002). Linear bid function - necessary optimality cond. for
local best response in time dependent case
D. Aussel, P. Bendotti and M. Pi²t¥k, Nash Equilibrium in
Pay-as-bid Electricity Market : Part 2 - Best Response of
Producer, Optimization (2017) linear unit bid function,
explicit formula for best response

Explicit formula for equilibria
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Optimization (2017) explicit formula for equilibria

Didier Aussel
Bilevel Problems, MPCCs, and Multi-Leader-Follower Games



But also...

Non a priori structured bid functions

Escobar, J.F. and Jofré, A., Monopolistic competition in
electricity networks with resistance losses, Econom. Theory
44 (2010).
Escobar, J.F. and Jofré, A., Equilibrium analysis of
electricity auctions, preprint (2014).
E. Anderson, P. Holmberg and A. Philpott, Mixed strategies
in discriminatory divisible-good auctions, The RAND
Journal of Economics (2013). necessary optimality cond.
for local best response
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Notations

D. Aussel, P. Bendotti and M. Pi²t¥k, Nash Equilibrium in Pay-as-bid Electricity Market :
Optimization

Part 1 - Existence and Characterisation, 66:6 (2017)

Part 2 - Best Response of Producer, 66:6 (2017).

Let consider a �xed time instant and denote

D > 0 be the overall energy demand of all consumers

N be the set of producers

qi ≥ 0 be the production of i-th producer, i ∈ N

We assume that producer i ∈ N provides to the ISO a quadratic bid
function aiqi + biq

2
i given by ai, bi ≥ 0.

Similarly, let Aiqi +Biq
2
i be the true production cost of i-th producer

with Ai ≥ 0 and Bi > 0 re�ecting the increasing marginal cost of

production.
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Multi-Leader-Common-Follower game

Peculiarity of electricity markets is their bi-level structure:

Pi(a−i, b−i, D) max
ai,bi

max
qi

aiqi + biq
2
i − (Aiqi + Biq

2
i )

such that

{
ai, bi ≥ 0

(qj)j∈N ∈ Q(a, b)

where set-valued mapping Q(a, b) denotes solution set of

ISO(a, b,D) Q(a, b) = argmin
q

∑
i∈N (aiqi + biq

2
i )

such that


qi ≥ 0 , ∀i ∈ N∑
i∈N

qi = D
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Some motivation examples

Industrial Eco-Parks
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What is an � Eco-park � ?

Example of water management

In a geographical area,
there are di�erent
companies 1, . . . , n

Each of them is buying
fresh water (high price)
for their production
processes

Each company generates
some "dirty water" and
have to pay for discharge

Stand alone situation

Company 2

Company 3

Fresh water

Discharge water

Company 1Company 1
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How dos it work ?

The aims in designing Industrial Eco-park (IEP) are

a) Reduce cost of production of each company

b) Reduce the environmental impact of the whole production

Thus "Eco" of IEP is at the same time Economical and ecological
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What is an � Eco-park � ?

Example of water management

How to reach these aims?

a) create a network (water
tubes) between the
companies

b) Eventually install some
regeneration unit
(cleaning of the water)

It is important to understand that this approach is not limited to

water. It can be applied to vapor, gas, coaling �uids, human

resources...
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Kalundborg (Danemark)

An symbolic example of Industrial eco-park is Kalundborg
(Danemark)
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De�nition

What is an � Eco-park � ?

In order to convince companies to participate to the Ecopark, our
model should guarantee that:

a) each company will have a lower cost of production in Eco-park
organization than in stand-alone organization

b) the eco-park organization must generate a lower freshwater
consumption than with a stand-alone organization
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MOO classical treatment

The Eco-park design was done through Multi-objective Optimization
by the evaluation of Pareto fronts (Gold programming algorithms,
scalarization...).

min


Fresh water consumption
Individual costs of producer 1

...
Individual costs of producer n

s.t.

 Water balances
Topological constraints
Water quality criteria
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MOO classical treatment

Didier Aussel
Bilevel Problems, MPCCs, and Multi-Leader-Follower Games



Alternative approach

The needed change :

. . . to have an independant designer/regulator

. . . to have fair solutions for the companies

Thus we propose to use two di�erent possible models:

Hierarchical optimisation (bi-level optim.)

Nash game concept between the companies
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Single-Leader-Multi-Follower game
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Numerical treatment

This very di�cult problem is treated as follows:

�rst we replace the lower-level (convex) optimization problem by
their KKT systems; the resulting problem is an Mathematical
Programming with Complementarity Constraints (MPCC);

second the MPCC problem is solved by penalization methods

Numerical results have been obtained with Julia meta-solver coupled

with Gurobi, IPOPT and Baron.
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Single-Leader-Multi-Follower game
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More on Single-Leader-Multi-Follower
games

D.A & A. Svensson (J. Optim. Theory Appl. 182 (2019))
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Existence for optimistic SLMF games

Theorem

Assume that F is lower semi-continuous, and for each follower
i = 1, ...,M the objective fi is continuous and
(x, y−i) 7→ Ci(x, y−i) := {yi | gi(x, y) ≤ 0} is a lower semi-continuous
set-valued map which has nonempty compact graph. If the graph of
GNEP is nonempty, then the SLMF game admits an optimistic
solution.
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Example of linear pessimistic SLMF game with no
solutions

Let us consider the SLMFG with two followers

min
x∈[0,4]

max
y∈GNEP(x)

−x+ (y1 + y2).

with

miny1 y1

s.t.

 y1 ≥ 0
2y2 − y1 ≤ 2
y1 + y2 ≥ x

miny2 y2

s.t.

 y2 ≥ 0
2y1 − y2 ≤ 2
y1 + y2 ≥ x
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The solution of the parametric GNEP of the followers is given by

GNEP(x) =

 {(0, 0), (2, 2)} if x ≥ 4,
{(0, 0)} if x ∈ [0, 4[
∅ otherwise.

(5)

Notice that the function

ϕmax(x) := max
y∈GNEP(x)

−x+ (y1 + y2)

=

{
0 if x = 4
−x if x ∈ [0, 4[

is not lower semi-continuous, so that Weierstrass theorem argument

cannot be applied. And in fact, the value of the problem of the leader

is −4, while there does not exist a point x ∈ [0, 4] with that value.

The pessimistic linear single-leader-two-follower problem has no

optimal solution.
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Going back to applications: IEP
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Another approach: the blind/control input models

In two very recent works we suggested some reformulations of the
optimal design problem:

under some hypothesis (unique process for each company,
linearization in the case of regeneration units), we shown that
the optimal design problem can be reformulated as a classical
Mixed Integer Linear Programming problem (MILP);

this problem can be treated with classical tools (CPLEX);

Moreover we inserted a "minimal gain" condition

Costi(xi, x
P
−i, x

R, E) ≤ αi · STCi, ∀i ∈ IP .

ensuring that each participating company will gain at minimum α%

on its production cost.
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Another appraoch: the blind/control input models

Theorem

For E ∈ E and xR ≥ 0 �xed, the equilibrium set Eq(xR, E) is given by

Eq(x
R
, E) =


x
P

: ∀i ∈ IP ,

zi(x−i) +
∑

(k,i)∈E
xk,i =

∑
(i,j)∈E

xi,j

gi(x−i) ≤ 0
zi(x−i) ≥ 0
xi
∣∣
Ec
i,act

= 0

xi ≥ 0


(6)

Thus, the optimal design problem is equivalent to

min
E∈E,x∈R|Emax|

Z(x)

s.t.



x ∈ X,
zi(x−i) +

∑
(k,i)∈E

xk,i = +
∑

(i,j)∈E
xi,j , ∀i ∈ I

xi
∣∣
Ec
i,act

= 0, ∀i ∈ I

gi(x−i) ≤ 0, ∀i ∈ I
zi(x−i) ≥ 0, ∀i ∈ I
Costi(xi, x

P
−i, x

R, E) ≤ αi · STCi, ∀i ∈ IP
x ≥ 0.

(7)
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Some results

11

12 13

36

4 8 15 14 7910521

0

Figure: The con�guration in the case without regeneration units,
αi = 0.95 and Coef = 1. Gray nodes are consuming strictly positive
fresh water.
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Quasiconvex optimization
Now the case of GNEP...

I - Introduction to quasiconvex optimization
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Quasiconvex optimization
Now the case of GNEP...

Quasiconvexity

A function f : X → IR ∪ {+∞} is said to be quasiconvex on K if,

for all x, y ∈ K and all t ∈ [0, 1],

f (tx + (1− t)y) ≤ max{f (x), f (y)}.

or

for all λ ∈ IR, the sublevel set

Sλ = {x ∈ X : f (x) ≤ λ} is convex.

or

f differentiable

f is quasiconvex ⇐⇒ df is quasimonotone

or

f is quasiconvex ⇐⇒ ∂f is quasimonotone
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Quasiconvex optimization
Now the case of GNEP...

Quasiconvexity

A function f : X → IR ∪ {+∞} is said to be quasiconvex on K if,

for all λ ∈ IR, the sublevel set

Sλ = {x ∈ X : f (x) ≤ λ} is convex.

A function f : X → IR ∪ {+∞} is said to be semistrictly quasiconvex
on K if, f is quasiconvex and for any x , y ∈ K ,

f (x) < f (y)⇒ f (z) < f (y), ∀ z ∈ [x , y [.

convex ⇒ semistrictly quasiconvex ⇒ quasiconvex
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Quasiconvex optimization
Now the case of GNEP...

Why not a subdifferential for quasiconvex programming?

No (upper) semicontinuity of ∂f if f is not supposed to be
Lipschitz

No sufficient optimality condition

x̄ ∈ Sstr (∂f ,C ) =⇒ x̄ ∈ arg min
C

fHH
H ���
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Quasiconvex optimization
Now the case of GNEP...

II - Normal approach

a- First definitions
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Quasiconvex optimization
Now the case of GNEP...

A first approach

Sublevel set:

Sλ = {x ∈ X : f (x) ≤ λ}

S>λ = {x ∈ X : f (x) < λ}

Normal operator:

Define Nf (x) : X → 2X∗ by

Nf (x) = N(Sf (x), x)
= {x∗ ∈ X ∗ : 〈x∗, y − x〉 ≤ 0, ∀ y ∈ Sf (x)}.

With the corresponding definition for N>
f (x)
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Quasiconvex optimization
Now the case of GNEP...

But ...

Nf (x) = N(Sf (x), x) has no upper-semicontinuity properties

N>
f (x) = N(S>f (x), x) has no quasimonotonicity properties

Example
Define f : R2 → R by

f (a, b) =

{
|a| + |b| , if |a| + |b| ≤ 1

1, if |a| + |b| > 1
.

Then f is quasiconvex.
Consider x = (10, 0), x∗ = (1, 2), y = (0, 10) and y∗ = (2, 1).

We see that x∗ ∈ N<(x) and y∗ ∈ N< (y) (since |a| + |b| < 1 implies (1, 2) · (a − 10, b) ≤ 0 and

(2, 1) · (a, b − 10) ≤ 0) while
〈
x∗, y − x

〉
> 0 and

〈
y∗, y − x

〉
< 0. Hence N< is not quasimonotone.
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But ...another example

Nf (x) = N(Sf (x), x) has no upper-semicontinuity properties

N>
f (x) = N(S>f (x), x) has no quasimonotonicity properties

Example

Then f is quasiconvex.

We easily see that N(x) is not upper semicontinuous....

These two operators are essentially adapted to the class of semi-strictly

quasiconvex functions. Indeed in this case, for each x ∈ dom f \ arg min f ,

the sets Sf (x) and S<f (x) have the same closure and Nf (x) = N<
f (x).
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II - Normal approach

b- Adjusted sublevel sets
and

normal operator
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Definition

Adjusted sublevel set

For any x ∈ dom f , we define

Sa
f (x) = Sf (x) ∩ B(S<f (x), ρx)

where ρx = dist(x ,S<f (x)), if S<f (x) 6= ∅

and Sa
f (x) = Sf (x) if S<f (x) = ∅.

Sa
f (x) coincides with Sf (x) if cl(S>f (x)) = Sf (x)

e.g. f is semistrictly quasiconvex

Proposition

Let f : X → IR ∪ {+∞} be any function, with domain dom f . Then

f is quasiconvex ⇐⇒ Sa
f (x) is convex ,∀ x ∈ dom f .
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Adjusted normal operator

Adjusted sublevel set:

For any x ∈ dom f , we define

Sa
f (x) = Sf (x) ∩ B(S<f (x), ρx)

where ρx = dist(x ,S<f (x)), if S<f (x) 6= ∅.

Ajusted normal operator:

Na
f (x) = {x∗ ∈ X ∗ : 〈x∗, y − x〉 ≤ 0, ∀ y ∈ Sa

f (x)}
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B(S<
f (x), ρx)

Sa
f (x) = Sf (x) ∩ B(S<

f (x), ρx)
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An exercice.........

Let us draw the normal operator value Na
f (x , y) at the points

(x , y) = (0.5, 0.5), (x , y) = (0, 1), (x , y) = (1, 0), (x , y) = (1, 2),
(x , y) = (1.5, 0) and (x , y) = (0.5, 2).

Operator Na
f provide information at any point!!!
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Basic properties of Na
f

Nonemptyness:

Proposition

Let f : X → IR ∪ {+∞} be lsc. Assume that rad. continuous on dom f
or dom f is convex and intSλ 6= ∅, ∀λ > infX f . Then

f is quasiconvex ⇔ Na
f (x) \ {0} 6= ∅, ∀ x ∈ dom f \ arg min f .

Quasimonotonicity:

The normal operator Na
f is always quasimonotone
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Upper sign-continuity

• T : X → 2X∗ is said to be upper sign-continuous on K iff for any
x , y ∈ K , one have :

∀ t ∈ ]0, 1[, inf
x∗∈T (xt)

〈x∗, y − x〉 ≥ 0

=⇒ sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 0

where xt = (1− t)x + ty .

upper semi-continuous
⇓

upper hemicontinuous
⇓

upper sign-continuous
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locally upper sign continuity

Definition

Let T : K → 2X∗ be a set-valued map.

T is called locally upper sign-continuous on K if, for any x ∈ K there
exist a neigh. Vx of x and a upper sign-continuous set-valued map
Φx(·) : Vx → 2X∗ with nonempty convex w∗-compact values such that
Φx(y) ⊆ T (y) \ {0}, ∀ y ∈ Vx

Continuity of normal operator

Proposition

Let f be lsc quasiconvex function such that int(Sλ) 6= ∅, ∀λ > inf f .

Then Na
f is locally upper sign-continuous on dom f \ arg min f .
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III

Quasiconvex programming

a- Optimality conditions
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Quasiconvex programming

Let f : X → IR ∪ {+∞} and K ⊆ dom f be a convex subset.

(P) find x̄ ∈ K : f (x̄) = inf
x∈K

f (x)

Perfect case: f convex

f : X → IR ∪ {+∞} a proper convex function

K a nonempty convex subset of X , x̄ ∈ K + C.Q.

Then
f (x̄) = inf

x∈K
f (x) ⇐⇒ x̄ ∈ Sstr (∂f ,K )

What about f quasiconvex case?

x̄ ∈ Sstr (∂f (x̄),K ) =⇒ x̄ ∈ arg min
K

fHH
H �
��
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Sufficient optimality condition

Theorem

f : X → IR ∪ {+∞} quasiconvex, radially cont. on dom f

C ⊆ X such that conv(C ) ⊂ dom f .
Suppose that C ⊂ int(dom f ) or AffC = X .

Then x̄ ∈ S(Na
f \ {0},C ) =⇒ ∀ x ∈ C , f (x̄) ≤ f (x).

where x̄ ∈ S(Na
f \ {0},K) means that there exists x̄∗ ∈ Na

f (x̄) \ {0} such that

〈x̄∗, c − x〉 ≥ 0, ∀ c ∈ C .
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Necessary and Sufficient conditions

Proposition

Let C be a closed convex subset of X , x̄ ∈ C and f : X → IR be
continuous semistrictly quasiconvex such that int(Sa

f (x̄)) 6= ∅ and
f (x̄) > infX f .
Then the following assertions are equivalent:

i) f (x̄) = minC f

ii) x̄ ∈ Sstr (Na
f \ {0},C )

iii) 0 ∈ Na
f (x̄) \ {0}+ NK (C , x̄).
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GNEP reformulation in quasiconvex case

To simplify the notations, we will denote, for any i and any x ∈ Rn, by Si (x)
and Ai (x

−i ) the subsets of Rni

Si (x) = Sa
θi (·,x−i )(x

i ) and Ai (x
−i ) = arg min

Rni
θi (·, x−i ).

In order to construct the variational inequality problem we define the following
set-valued map Na

θ : Rn → 2Rn

which is described,

for any x = (x1, . . . , xp) ∈ Rn1 × . . .× Rnp , by

Na
θ(x) = F1(x)× . . .× Fp(x),

where Fi (x) =

{
B i (0, 1) if x i ∈ Ai (x

−i )

co(Na
θi

(x i ) ∩ Si (0, 1)) otherwise

The set-valued map Na
θ has nonempty convex compact values.
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Sufficient condition

In the following we assume that X is a given nonempty subset X of Rn , such that for any i , the set Xi (x
−i ) is

given as

Xi (x
−i ) = {x i ∈ Rni : (x i , x−i ) ∈ X}.

Theorem

Let us assume that, for any i , the function θi is continuous and
quasiconvex with respect to the i-th variable. Then every solution of
S(Na

θ ,X ) is a solution of the GNEP.

Note that the link between GNEP and variational inequality is valid even

if the constraint set X is neither convex nor compact.
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Lemma

Let i ∈ {1, . . . , p}. If the function θi is continuous quasiconvex with
respect to the i-th variable, then,

0 ∈ Fi (x̄) ⇐⇒ x̄ i ∈ Ai (x̄−i ).

Proof. It is sufficient to consider the case of a point x̄ such that x̄ i 6∈ Ai (x̄
−i ). Since θi (·, x̄−i ) is continuous at

x̄ i , the interior of Si (x̄) is nonempty. Let us denote by Ki the convex cone

Ki = Na
θi

(x̄ i ) = (Si (x̄)− x̄ i )◦.

By quasiconvexity of θi , Ki is not reduced to {0}. Let us first observe that, since Si (x̄) has a nonempty interior,
Ki is a pointed cone, that is Ki ∩ (−Ki ) = {0}.
Now let us suppose that 0 ∈ Fi (x̄). By Caratheodory theorem, there exist vectors vi ∈ [Ki ∩ Si (0, 1)],
i = 1, . . . , n + 1 and scalars λi ≥ 0, i = 1, . . . , n + 1 with

n+1∑
i=1

λi = 1 and 0 =
n+1∑
i=1

λi vi .
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Since there exists at least one r ∈ {1, . . . , n + 1} such that λr > 0 we have

vr = −
n+1∑

i=1,i 6=r

λi

λr
vi

which clearly shows that vr is an element of the convex cone −Ki . But vr ∈ Si (0, 1) and thus vr 6= 0. This
contradicts the fact that Ki is pointed and the proof is complete.
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Proof of necessary condition

Proof. Let us consider x̄ to be a solution of S(Na
θ, X ). There exists v ∈ Na

θ(x̄) such that

〈v, y − x̄〉 ≥ 0, ∀ y ∈ X . (∗)

Let i ∈ {1, . . . , p}.

If x̄ i ∈ Ai (x̄
−i ) then obviously x̄ i ∈ Soli (x̄

−i ).

Otherwise v i ∈ Fi (x̄) = co(Na
θi

(x̄ i ) ∩ Si (0, 1)). Thus, according to Lemma 2, there exist λ > 0 and

ui ∈ Na
θi

(x̄ i ) \ {0} satisfying v i = λui .

Now for any x i ∈ Xi (x̄
−i ), consider y =

(
x̄1, . . . , x̄ i−1, x i , x̄ i+1, . . . , x̄p

)
.

From (∗) one immediately obtains that 〈ui , x i − x̄ i 〉 ≥ 0. Since x i is an arbitrary element of Xi (x̄
−i ), we have

that x̄ i is a solution of S(Na
θi
\ {0}, Xi (x̄

−i )) and therefore, according to Prop. 4,

x̄ i ∈ Soli (x̄
−i )

Since i was arbitrarily chosen we conclude that x̄ solves the GNEP.
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Necessary and sufficient condition

Theorem

Let us suppose that, for any i , the loss function θi is continuous and
semistrictly quasiconvex with respect to the i-th variable. Further assume
that the set X is a nonempty convex subset of RN . Then

any solution of the variational inequality S(Na
θ ,X ) is a solution

of the GNEP

and

any solution of the GNEP is a solution of the quasi-variational
inequality QVI (Na

θ ,X )

where X stands for the set-valued map defined on R2 by

X (x) =

p∏
i=1

Xi (x−i )

.

D.A. & J. Dutta, Oper. Res. Letters, 2008.
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