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Multi-Leader-Follower games
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an advertisement

A short state of art on Multi-Leader-Follower games, D.A. and
A. Svensson, in a book dedicated to Stackelberg, editors A.
Zemkoho and S. Dempe, Springer Ed. (2019)

Springer Optimization and Its Applications 161

Stephan Dempe
Alain Zemkoho Editors

Bilevel
Optimization

Advances and Next Challenges

&) Springer
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Bilevel: some general comments ]
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BL: a first definition

A Bilevel Problem consists in an upper-level/leader’s
problem

‘mingern”  F(z,y)

ot rze X
- y € S(z)

where () # X C R"™ and S(x) stands for the solution set of its
lower-level /follower’s problem

mingegm  f(z,y)
st g(r,y) <0
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A example

Consider the following simple bilevel problem

“minx cR 7

z € [-1,1]
s.t. { 9 E Si@)

with S(z) = “y solving

minger -y

st 2*(y?—1)<07”
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Lower level problem:

minger —2.y

st 22(y?-1)<07”

Note that the solution map of this convex problem is

{1} =<0
S(x)=¢{-1} >0
R 2=0

Thus for each = # 0 there is a unique associated solution of the lower
level problem
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Lower level problem:

minger —xy

st 22(y*-1)<07”

Note that the solution map of this convex problem is

|
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example

Consider the following simple bilevel problem

“minger” —z.y

z € [-1,1]
3.1. { 9 & Sl

with S(x) = “y solving

{1} =<0
S(x):=<{-1} >0
R x2=0
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Ambiguity: Optimistic approach

An Oplimistic Bilevel Problem consists in an
upper-level /leader’s problem

mingcgn mingegm  F(x,y)
zeX

s.t. y € S(m)

where ) # X C R™ and S(x) stands for the solution set of its
lower-level /follower’s problem

mingegm  f(,y)
st g(z,y) <0

Didier Aussel



Ambiguity: Pessimistic approach

An Pessimistic Bilevel Problem consists in an
upper-level /leader’s problem

mingegr maxyerm  F(2,y)
reX

s.t. yc S(x)

where ) # X C R™ and S(x) stands for the solution set of its
lower-level /follower’s problem

mingegm  f(,y)
st g(z,y) <0
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Ambiguity: the most simple

And of course the "confortable situation" corresponds to the
case of a unique response

Vee X, S(z)={yx)}.
Then

minxGR" F(x,y(x))
s.t. { ze X
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Ambiguity: the most simple

And of course the "confortable situation" corresponds to the
case of a unique response

Vee X, S(z)={yx)}.
Then

minxGR" F(xuy(I»
s.t. { ze X

For example when

for any z, g(x,-) is quasiconvex and f(z,-) is strictly convex.

v
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Ambiguity: Selection approach

An "Selection-type" Bilevel Problem consists in an
upper-level /leader’s problem

mingegn  F(z,y(z))

Ny reX
o y(z) is a uniquely determined selection of S(x)

J. Escobar & A. Jofré, Equilibrium Analysis of Electricity
Auctions (2011)
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Ambiguity: The new probabilistic approach

In one of the Elevator pitches (Monday), D.Salas and A.
Svensson proposed a probabilistic approach:

o Consider a probability on the different possible follower’s
reactions

o Minimize the expectation of the leader(s)
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An alternative point of view

Instead of considering the previous (optimistic) formulation of BL:

mingegn mingegm  F(z,y)
rzeX

s.t. e S(x)
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An alternative point of view

Instead of considering the previous (optimistic) formulation of BL:

mingegn mingegm  F(z,y)
rzeX

s.t. e S(x)

one can define the (optimistic) value function
@min(x) = mym{F(x,y) : g(:c,y) < O} (1)

and the Bl problem becomes

minze]Rn SOmln (.T)
s.1. rzeX
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An alternative point of view

Instead of considering the previous (pessimistic) formulation of BL:

mingegn maxyegm  F(z,y)
rzeX

s.t. e S(x)
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An alternative point of view

Instead of considering the previous (pessimistic) formulation of BL:

mingegn maxyegm  F(z,y)
rzeX

s.t. e S(x)

one can define the (pessimistic) value function
‘Pmaa:(x) = Hlan{F(I, y) : g(x, y) < O} (2)

and the Bl problem becomes

minmER" Pmax (LE)
s.t. re X
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An alternative point of view

This is the point of view presented in Stephan Dempe’s book:

mingcg- min / maxycgm  F(2,y)
zeX Vs
y € S(x)

minmeRn Pmin/max (Z‘)

s.t. s.t. rzeX
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An alternative point of view

This is the point of view presented in Stephan Dempe’s book:

min min / max F(z :
rcR” / yER™ (m ’Ey))( mingcrn Pmin/max (Z‘)

Vs
.t. .t. X
s.t yES(ac) s.t T €

It immediately raises the question

What is a solution??
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An alternative point of view

This is the point of view presented in Stephan Dempe’s book:

min min / max F(z :
rcR” / yER™ (m ’Ey))( mingcrn Pmin/max (Z‘)

Vs
.t. .t. X
s.t yES(ac) s.t T €

It immediately raises the question

What is a solution??
@ an optimal x = leader’s optimal strateqy?

@ an optimal couple (x,y) = couple of strategies of leader and
follower?

Didier Aussel



Real life...

Actually usually when considering BL

minxeRn minye]RnL F(x, y)
reX

s.t. y e S(x)

people say

o Step A: the leader plays first
@ Step B: the follower reacts

But in real life it’s a little bit more complex....
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Real life...

Actually in real life, when considering BL

mingepn mingepm  F(z,y)
zeX

s.t. b S(CE)

We only work for the leader!!
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Real life...

Actually in real life, when considering BL

mingepn mingepm  F(z,y)
zeX

s.t. b= S(:zc)

We only work for the leader!! Indeed
@ the leader has a model of the follower’s reaction: optimistic or
pessimistic and
o Step 1: we compute a solution x or (z,y) of the BL model

o Step 2: the leader plays x

@ Step 3: the follower decides to play...whatever he wants!!!
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An existence result (optimistic)

Definition

The Mangasarian-Fromovitz constraint qualification (MFCQ) is
satisfied at (Z,7y) with 7 feasible point of the problem

min{f(z,y) : g(z,y) < 0}
if the system

Vygi(T,9)d <0V i € I(z,7) :={j : 9;(7,y) = 0}

has a solution.
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An existence result (cont.)

Assume that X = {z e R" : G(z) <0}

Theorem (Bank, Guddat, Klatte, Kummer, Tammer (83))

Let T with G(Z) < 0 be fized.
o the set {(z,y) : g(x,y) < 0} is not empty and compact;

@ at each point (Z,y) € gphS with G(T) < 0, assumption (MFCQ)
is satisfied;

then, the set-valued map S(-) is upper semicontinuous at (T,7) and
the function ¢,(-) is continuous at .
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An existence result (cont.)

Theorem

Assume that

o the set {(z,y) : g(x,y) < 0} is not empty and compact;

@ at each point (T,7) € gphS with G(z) < 0, assumptions
(MFCQ) is satisfied;

o the set {x : G(x) < 0} is not empty and compact,

then optimistic bilevel problem has a (global) optimal solution.
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Bilevel problems and MPCC reformulationJ




We consider a Bilevel Problem consisting in an upper-level /
leader’s problem

114 : 2 F
min * F(z, y)

st.yeSx),zre X

where () # X C R™, and S(z) stands for the solution of its
lower-level / follower’s problem

b i)

s.tg(r,y) <0

which we assume to be convex and smooth, i.e. Vz € X, the
functions f(z,-) and g;(x,-) are smooth convex functions, and
the gradients V,g;, V, f are continuous, ¢ = 1,...,p.
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MPCC reformulation

Replacing the lower-level problem by its KKT conditions, gives place
to a Mathematical Program with Complementarity Constraints.

Bilevel MPCC
min F(z,y) “gnei)rgl”F(x,y)
s.t. y € S(x) s.t. (y,u) € KKT(x)
with S(x) = “y solving with KKT(z) = “(y, ) solving
Juin f(z,y) { Vyf(@,y) +u' Vyg(z,y) =0
stg(@,y) <0 Isos ey 207

We write A(z,y) for the set of u satisfying (y,u) € KKT(z).
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Consider the following Bilevel problem and its MPCC reformulation
Bilevel

MPCC
“ min "z “ min "x
w€[—1,1] z€[—1,1]
s.t. y € S(x) ) s.t. (y,u) € KKT(x)

with S(z) = *y solving with KKT(x) = “(y, u) solving

mip oy { z+u-2ya’ =0
< _ _ ”
sta(y?—1)<0” Used el =0

4

@ (0,—1,u) is a local solution of “MPCC?, for any u € A(0, —1) = Ry
@ (0,—1) is NOT a local solution of “Bilevel”
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(a) (0,—1,u) is a (b) (0,—1) isn’t a
local solution of local solution of the
MPCC, Vu € R,.. Bilevel problem.
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Optimistic and Pessimistic approaches

The optimistic Bilevel (OB) is

minmin F(z,y)
c oy

st. ye S(z),z e X.

The pessimistic Bilevel (PB) is

min max F(z,y)
z oy

s.t. ye S(x),z e X.
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Optimistic and Pessimistic approaches

The optimistic Bilevel (OB) is

minmin F(z,y)
@z oy

st. ye S(z),z e X.

The optimistic MPCC (OMPCQ):

minmin F(x,y)
z oy

s.t. (y,u) € KKT(z),z € X.

The pessimistic Bilevel (PB) is

min max F(z,y)
z y

s.t. ye S(x),z e X.

The pessimistic MPCC (PMPCC):

min max F(z,y)
z oy

s.t. (y,u) € KKT(x),z € X.
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Optimistic approach

Is bilevel programming a special case of a MPCC?
S. Dempe -J. Dutta (2012 Math. Prog.)

min min F(z,y)
Ty

stt. y € S(x),z € X.
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Local solutions for in optimistic approach

Definition

A local (resp. global) solution of (OB) is a point

(z,y) € Gr(S) if there exists U € N(Z,7) (resp. U = R™ x R™)
such that

F(z,y) < F(z,y), Y(z,y) € UNGr(S).

Definition

A local (resp. global) solution for (OMPCC) is a triplet
(Z,9,u) € Gr(KKT) such that there exists U € N (z, 7, u)
(resp. U = R™ x R™ x RP) with

| \

F(z,9) < F(z,y), V(z,y,u) e UNGr(KKT).
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Results for the optimistic case

In Dempe-Dutta it was considered the Slater type constraint
qualification for a parameter x € X:

Slater: Jy(x) € R™ s.t. gi(z,y(x)) <0, Vi=1,..,p.
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Results for the optimistic case

Theorem 1 Dempe-Dutta (2012)
Assume the convexity condition and Slater’s CQ at z.

@ If (z,y) is a local solution for (OB), then for each
u € Az,y), (z,7,u) is a local solution for (OMPCC).

@ Conversely, assume that Slater’s CQ holds on a
neighbourhood of Z, A(Z,7) # (), and (Z,7,u) is a local
solution of (OMPCC) for every u € A(z,y). Then (z,y) is a
local solution of (OB).

<
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Under the convexity assumption and some CQ ensuring K KT (z) # 0,
Ve € X:

vu € A(z,7)

(z,y) sol (z,y,u) sol

of (OB) of (OMPCC)

Figure: Global solution comparison in optimistic approach

Vu € A(Z, 7),

(z,y) local

sol of (OB) local sol of

if Slater’s CQ (OMPCC)

holds around

Figure: Local solution comparison in optimistic approach
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Example 1 (optimistic)

Consider the following optimistic Bilevel problem
min min &
ze[-1,1] v
st.yeSx), zeR
with lower-level
min — a2y
y

st 22(y? — 1) <0.

@ (0,—1,u) is a local solution of (OMPCC), for any
ueA(0,-1) =R,
@ (0,—1) is NOT a local solution of (OB).

Didier Aussel



Pessimistic Approach

Is bilevel programming a special case of a (MPCC)?

Aussel - Svensson (2019 - J. Optim. Theory Appl.)

min max F(z,y)
z oy

s.t. ye Sx),r e X.
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Definition

A pair (z,y) is said to be a local (resp. global) solution for (PB),
if (z,y) € Gr(Sp) and U € N(Z,y) such that

F(z,y) < F(z,y), V(z,y) € UNGr(Sp). (3)

where Sy (z) := argmazy {F(z,y) | y € S(x)}.

| \

Definition

A triplet (Z, 9, u) is said to be a local (resp. global) solution for
(PMPCQ), if (z,y,u) € Gr(KKT,) and 3U € N(z,y, u) such
that

F(z,y) < F(z,y), V(z,y,u) € UNGr(KKT),). (4)

where K KTy(z) := argmaxy ., {F(z,y) | (y,u) € KKT(z)}.
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Results for the pessimistic case

Assume the convexity condition and that KKT(z) # 0, Vx € X.

@ If (z,y) is a local solution for (PB), then for each
u € AZ,y), (Z,9,u) is a local solution for (PMPCC).

@ Conversely, assume that one of the following condition are
satisfied:

@ The multifunction K KT, is LSC around (z,y, ) and
(Z,y,u) is a local solution of (PB).

© Slater’s CQ holds on a neighbourhood of Z, A(Z,7) # (), and
for every u € A(Z,7), (Z,7,u) is a local solution of
(PMPCC).

Then (z,y) is a local solution of (PB).
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Example 1 (pessimistic)

Consider the following pessimistic Bilevel problem
min max
ze[-1,1] ¥
st.yeSx),zeR
with lower-level
min — a2y
Yy

st 22(y? — 1) <0.

@ (0,—1,u) is a local solution of (PMPCC), for any
ueA(0,-1) =R,
@ (0,—1) is NOT a local solution of (PB).
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Example 2

Consider the following Bilevel problem

113 min 7):1/,
T

st. yeS(z)
with S(x) the solution of the lower-level problem

min{-y [z +y <0,y <0}
Y

Even though Slater’s CQ holds, we have

Q (0,0,uy,uz) with (u1,u2) € A(0,0) = {(A\,1—X) | A €[0,1]} is a
local solution of “(MPCC)”, iff uy # 0,

@ (0,0) is NOT a local solution for “(B)”.
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Under the convexity assumption and some (CQ) ensuring KKT'(z) # 0,
Vo € X:

va € A(Z,y)

(z,9,a) sol

of (PMPCC)

Figure: Global solution comparison in pessimistic approach

va € AZ,9),

(2, ) local (z,9,a)

sol of (PB) local sol of

Slater’s CQ for (PMPCC)

all x around z

Figure: Local solutions comparison in pessimistic approach
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An introduction to MLFG )




Notations and definitions: Nash problems

@ A Nash equilibrium problem is a noncooperative game in
which the decision function (cost/benefit) of each player
depends on the decision of the other players.
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Notations and definitions: Nash problems

@ A Nash equilibrium problem is a noncooperative game in
which the decision function (cost/benefit) of each player
depends on the decision of the other players.

Denote by N the number of players and each player i controls
variables x' € R™. The “total strategy vector” is & which will be often
denoted by

= (2%, x7").

where ¢ is the strategy vector of the other players.
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Nash Equilibrium Problem (NEP)

@ The strategy of player i belongs to a strategy set

LEiGXi
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Nash Equilibrium Problem (NEP)

@ The strategy of player i belongs to a strategy set
:ci e X;

@ Given the strategies 7% of the other players, the aim of player 4
is to choose a strategy z* solving

Pi(z7%) max 6;(2%, 277

st. e X;

where 0;(-,27%) : R — R is the decision function for player i.
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Nash Equilibrium Problem (NEP)

@ The strategy of player i belongs to a strategy set
:ci e X;

@ Given the strategies 7% of the other players, the aim of player 4
is to choose a strategy z* solving

Pi(z7%) max 6;(2%, 277

st. e X;

where 0;(-,27%) : R — R is the decision function for player i.

@ A vector T is a Nash Equilibrium if

)

for any 1, T solves Pi(z7"). J
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Nash Equilibrium Problem

o A generalized Nash equilibrium problem (GNEP) is a
noncooperative game in which the decision function and
strategy set of each player depend on the decision of the other
players.

@ The strategy of player i belongs to a strategy set

zt e Xl(z_7)

which depends on the decision variables of the other players.




Nash Equilibrium Problem

o A generalized Nash equilibrium problem (GNEP) is a
noncooperative game in which the decision function and
strategy set of each player depend on the decision of the other
players.

@ The strategy of player i belongs to a strategy set
zt e Xl(z_7)
which depends on the decision variables of the other players.

] Given the strategies % of the other players, the aim of player i is to choose a strategy

z* solving

Py(z~ %) max Hi(aci,:cfi)

s.t. zt € X;(x7Y)

where 6,;(-,z~%) : R™i — R is the decision function for player i.




Nash Equilibrium Problem

o A generalized Nash equilibrium problem (GNEP) is a
noncooperative game in which the decision function and
strategy set of each player depend on the decision of the other
players.

@ The strategy of player i belongs to a strategy set
zt e Xl(z_7)
which depends on the decision variables of the other players.

] Given the strategies % of the other players, the aim of player i is to choose a strategy

z* solving

Py(z~ %) max Hi(aci,:c*i)

s.t. z' e X;(z™%)

where 6,;(-,z~%) : R™i — R is the decision function for player i.

@ A vector 7 is a Generalized Nash Equilibrium if

for any 1, ' solves Pi(i_i). J




General model

Generalized Nash game (GNEP):

min 01(x) min 0 ()

1 Tn

S.t. { z1 € X1(x-1) S.t. { T € Xp(z_p)
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A classical existence result

Theorem (Ichiishi-Quinzii 1983)
Let a GNEP be given and suppose that
Q@ For eachv =1,...,N there exist a nonempty, conver and
compact set K, C R™ such that the point-to-set map
XY : K_, = K,, is both upper and lower semicontinuous
with nonempty closed and convexr values, where
K_y = HV’#V Kl/'
@ For every player v, the function 0¥ is continuous and
0¥ (-,x7") is quasi-conver on X" (x™V).

Then a generalized Nash equilibrium exists.

Note that in Aussel-Dutta (2008) an alternative proof of
existence of equilibria has been given, under the assumption of
the Rosen’s law, by using the normal approach technique.
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Structure of the set of GNEPs

Example

Let z = (x!,2?) € [0,4]? and f(x) := dr, (x)?, where T} is the
triangle with vertices (0,0), (0,4) and (1,2), and T is the triangle
whose vertices are (0,0), (4,0) and (2,1). Let

S, (z7") = argming, {f¥(z',2?) | ¥ € [0,4]}. We see that

2y ={a' €10,4] | (z*,2%) € Ty} for 22 € [0,1]
{2} for all 2% € (1,4])
{z? €[0,4] | (2*,2?%) € T} for ' € [0, 1]
{2} for all 2! € (1,4]).

Sl(l' )
Sl(xz)
o SQ(SCl)
Sa(z7)

1

T
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Structure of the set of GNEPs (cont.)




A particular case

Multi-Leader-Follower-Game (MLFG):

min 01(x,y) min On(z,y)
yllv--vyp yr/vap
ot z1 € Xq1(z—q) ot xn € Xp(z_p)
o y €Y(x) o y €Y(x)
n W
miny, s Yp o1 (xa y) miny1,..,yp ¢>p($, y)
s.t. {yeY(x) s.t. { yeY(x)
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and another problem

Single-Leader-Multi-Follower-Game (SLMFG):

min 01(z,y)
Yi,--Yp
ot reX
o yeY(x)
W
minyl7~~1yp ¢1(x7y) minylwwyp gb;ﬂ(m’y)
s.t. { yeY(x) s.t. { yeY(x)
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A particular case

Multi-Leader-Single-Follower-Game (MLSFG):

min 01(z,y) min On(x,y)
T Tn
Y1,-3Yp Y15-Yp
ot 1 € Xq1(z_1) ot T € Xp(z_p)
& yeY() * yeY()
i
miny17~~7yp ¢1($, y)
s.t. {yeY(x)
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MLSF game: ill-posedness

ming, , 61(x1,22,y) = 1.y ming, , 61(21,22,y) = —T2.y
HANS [0, 1] To € [0, 1]
8.t. 8.t.
y € S(x1,22) y € S(x1,72)
with
miny f(x1,$2,y) = %y?) - (xl a4 x2)2y
st. yelR
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MLSF game: ill-posedness

ming, , 61(x1,22,y) = 1.y ming, , 61(21,22,y) = —T2.y
HANS [0, 1] To € [0, 1]
8.t. 8.t.
y € S(x1,22) y € S(x1,72)
with
miny f(x1,$2,y) = %y?) - (xl a4 x2)2y
st. yelR

Exercise: Please analyse this small example...
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MLSF game: ill-posedness

The follower problem first

ming,  f(z1,22,y) = 55° — (21 + 22)%y

st. yelR
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MLSF game: ill-posedness

The follower problem first

ming,  f(z1,22,y) = 55° — (21 + 22)%y

st. yelR

The solution map of this follower problem is

S(x1,22) = {y1 = 1 + 22, Y2 = —x1 — 22}
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MLSF game: ill-posedness

The solution map of this follower problem is

S($1,$2) = {yl =1 +22,Y2 = —T1 — $2}~

The leader 1 problem

P .
Ty + x1.29 ify=1n

0 xz, =T1.Yy = ! 1 =S

1( y) 1Y { —gj% — X1.22 ny Y2
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MLSF game: ill-posedness

The solution map of this follower problem is |

5(581,332) = {yl =1 +22,Y2 = —T1 — $2}~

The leader 1 problem

) :
Ty + x1.29 ify=1n

0 xz, =r1.Yy= ! 1 E

(2, y) = x1y {_gﬁ—ml.xg ify =y2

Thus the response function of player 1 is

Ry (zy) = {0} if y=y1 with a payoff =0
D207 {1} ify = yo with a payoff = —1 — 29
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MLSF game: ill-posedness

The solution map of this follower problem is

S($1,$2) = {yl =1 +22,Y2 = —T1 — $2}~

The leader 2 problem

2 -
—r] —x1.22  ify=wy

01(x,y) = —xo.y = 1 ;
1( y) 2-Y { l’%—‘—ZEl.IﬂQ ny:yZ
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MLSF game: ill-posedness

The solution map of this follower problem is |

5(581,332) = {yl =1 +22,Y2 = —T1 — $2}~

The leader 2 problem

2 -
—r] —x1.22  ify=uy

01(z,y) = —x2.y = 1 ;
1( y) 2-Y { l’%‘FZBl.xQ ny:yQ

Thus the response function of player 1 is

Ro(z1) = {1}  if y = y1 with a payoff = —1 — x;
A {0} ify = yo with a payoff =0
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MLSF game: ill-posedness

[ {0, y=y1)} with a payoff =0
s { {1,y = y;)} with a payoff = —1 — x5

[ {,y=w1)} with a payoff=—-1—=
el = { {00,y = y;)} with a payoff =0 !
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MLSF game: ill-posedness

with a payoff =0
with a payoff = —1 — x5

with a payoff = —1 — x1
with a payoff =0

So the Nash equilibrium will be (z1,z2) = (1, 1) but....
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A final model

For the Demand-side management, we recently introduced the
Multi-Leader-Disjoint-Follower game

Electricity market
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Just one example [Pang-Fukushima 05]

Let us consider a 2-leader-single-follower game:

mi”ml,y %a:l +vy minm%y —%xg -y
z1 € [0,1] zo € [0,1]
y € S(z1,22) y € S(z1,22)

where S(z1,x2) is the solution map of

. 1
ming>o0 Y(—1 + x1 4 z2) + 53/2 J
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Just one example [Pang-Fukushima 05]

Let us consider a 2-leader-single-follower game:

ming oy, %11 + v Ming, o 7%962 — Y2
z1 € [0,1] zg € [0,1]
y1 € S(z1,x2) y2 € S(z1,22)

where S(z1,x2) is the solution map of

. 1
ming>o0 Y(—1 + x1 4 z2) + 53/2 J
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Actually S(x1,x2) = max{0,1 — z1 — 22} thus the problem becomes

. 1
z1 + Y1 MiNg g, yy  —5T2 — Y2

%
{ z1 € | { z2 € [0,1]

Y1 —max{O 1—x) —xz2} y2 = max{0,1 —x1 — z2}

mingy ,y;




Actually S(x1,x2) = max{0,1 — z1 — 22} thus the problem becomes

mMing, ,yq %zl + 1 MiNgy Yy *%E’z — Y2
za € [0,1]
—max{O 1—x) —xz2} y2 = max{0,1 —x1 — z2}

Then the Response maps are
{0} 21 €0, 5]
R1(£Ez) = {1 — a)z} and Rz(m’l) = {0, 1} xr1 = %
{1} z1€]3,1]

and thus there is no Nash equilibrium.......
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mingy ,y; %11 +tu Minzy,yo 7%’52 Y2
z1 € [0,1] zo € [0,1]
y1 = max{0,1 — z1 — z2} y1 = max{0,1 — z] — za}

max{0,1 —x1; — z2} Y2 max{0,1 —x; —x2}




But let us consider the slightly modified problem

mingy ,y; %11 +tu Minzy,yo 7%’52 Y2
z1 € [0,1] zo € [0,1]
y1 = max{0,1 — z1 — z2} y1 = max{0,1 —z1 — x2}
y2 = max{0,1 —x1 — za} y2 = max{0,1 — 1 —z2}

that can be proved to have a (unique) Nash equilibrium namely
(z1,22) = (0,1) with y1 = y2 = O!Il!!
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The kind of “trick” is called “All Equilibrium approach” and has been
introduced in A.A. Kulkarni & U.V. Shanbhag, A Shared-Constraint
Approach to Multi-Leader Multi-Follower Games, Set-Valued Var. Anal
(2014).

They proved that every Nash equilibirum (initial problem) is a Nash
equilibrium for the “all equilibrium” formulation.

It corresponds to the case where each leader takes into account the

conjectures regarding the follower decision made by all other leaders....
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Some motivation examples
Electricity markets
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A short introduction to electricity markets

EPEYSPOT

()

Day Ahead Market hourly prices




A short introduction to electricity markets (cont.)

Volume of exchanges

Spot market

Long-term contracts.
Mid-term contracts
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A short introduction to electricity markets (cont.)

Volume of exchanges

Spot market

80% of exchanges Long-term contracts
Mid-term contracts

Bid schedule of the spot market

Producers and retailers enter their bids Producers plan their production = Unit Commitments Real production/purchases

t t
00 01:00 02:00

12:00 12:40 24

Regulator computes market price and productions/purchases
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Modeling an Electricity Markets

@ electricity market consists of

i) generators/consumers i € N respect their own interests in
competition with others

ii) market operator (ISO) who maintain energy generation and
load balance, and protect public welfare

@ the ISO has to consider:
ii) quantities ¢; of generated/consumed electricity
iii) electricity dispatch t. with respect to transmission
capacities
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Modeling an Electricity Markets

@ electricity market consists of

i) generators/consumers i € N respect their own interests in
competition with others

ii) market operator (ISO) who maintain energy generation and
load balance, and protect public welfare

@ the ISO has to consider:

ii) quantities ¢; of generated/consumed electricity
iii) electricity dispatch t. with respect to transmission
capacities

@ since 1990s, Generalized Nash equilibrium problem is the most
popular way of modeling spot electricity markets or, more precisely,
Multi-leader-common-follower game
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Multi-Leader-Common-Follower game

Player 1's problem

Player 2's problem

N

Player n's problem

’arjr/

Regulator's problem
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Multi-Leader-Common-Follower game

A classical problem (of a producer) is the best response search

Player 1's problem Player 2's problem Player n's problem

’arbr/

Regulator's problem
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Models with unit bid functions

@ Electricity markets without transmission losses:
X. Hu ¢ D. Ralph, Using EPECs to Model Bilevel Games in
Restructured Electricity Markets with Locational Prices, Operations
Research (2007). bid-on-a-only
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Models with unit bid functions

@ Electricity markets without transmission losses:
X. Hu ¢ D. Ralph, Using EPECs to Model Bilevel Games in
Restructured Electricity Markets with Locational Prices, Operations
Research (2007). bid-on-a-only

@ Electricity markets with transmission losses:

e Henrion, R., Outrata, J. & Surowiec, T., Analysis of
M-stationary points to an EPEC modeling oligopolistic
competition in an electricity spot market, ESAIM: COCV
(2012). M-stationary points

e D. A., R. Correa & M. Marechal Spot electricity market
with transmission losses, J. Industrial Manag. Optim
(2013). ezistence of Nash equil., case of a two island model

o D.A., M. Cervinka & M. Marechal, Deregulated electricity
markets with thermal losses and production bounds,
RAIRO (2016) production bounds, well-posedness of model
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Some references on the topic (cont.)

@ Best response in electricity markets:

o E. Anderson and A. Philpott, Optimal Offer Construction
in Electricity Markets, Mathematics of Operations Research
(2002). Linear bid function - necessary optimality cond. for
local best response in time dependent case

o D. Aussel, P. Bendotti and M. Pisték, Nash Equilibrium in
Pay-as-bid FElectricity Market : Part 2 - Best Response of
Producer, Optimization (2017) linear unit bid function,
explicit formula for best response
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Some references on the topic (cont.)

@ Best response in electricity markets:

o E. Anderson and A. Philpott, Optimal Offer Construction
in Electricity Markets, Mathematics of Operations Research
(2002). Linear bid function - necessary optimality cond. for
local best response in time dependent case

o D. Aussel, P. Bendotti and M. Pisték, Nash Equilibrium in
Pay-as-bid FElectricity Market : Part 2 - Best Response of
Producer, Optimization (2017) linear unit bid function,
explicit formula for best response

@ Explicit formula for equilibria
D. Aussel, P. Bendotti and M. Pisték, Nash Equilibrium in Pay-as-bid
Electricity Market : Part 1 - Ezistence and Characterisation,
Optimization (2017) explicit formula for equilibria
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@ Non a priori structured bid functions

o FEscobar, J.F. and Jofré, A., Monopolistic competition in
electricity networks with resistance losses, Econom. Theory
44 (2010).

e FEscobar, J.F. and Jofré, A., Equilibrium analysis of
electricity auctions, preprint (2014).

o E. Anderson, P. Holmberg and A. Philpott, Mized strategies
in discriminatory divisible-good auctions, The RAND
Journal of Economics (2013). necessary optimality cond.
for local best response
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D. Aussel, P. Bendotti and M. Pist&k, Nash Equilibrium in Pay-as-bid Electricity Market :
Optimization
Part 1 - Existence and Characterisation, 66:6 (2017)

Part 2 - Best Response of Producer, 66:6 (2017).
Let consider a fixed time instant and denote

@ D > 0 be the overall energy demand of all consumers

@ N be the set of producers

@ ¢; > 0 be the production of i-th producer, : € N/




D. Aussel, P. Bendotti and M. Pist&k, Nash Equilibrium in Pay-as-bid Electricity Market :
Optimization
Part 1 - Existence and Characterisation, 66:6 (2017)
Part 2 - Best Response of Producer, 66:6 (2017).
Let consider a fixed time instant and denote
@ D > 0 be the overall energy demand of all consumers
@ N be the set of producers

@ ¢; > 0 be the production of i-th producer, : € N/

We assume that producer ¢ € A provides to the ISO a quadratic bid
function a;q; + b;q? given by a;, b; > 0.




D. Aussel, P. Bendotti and M. Pist&k, Nash Equilibrium in Pay-as-bid Electricity Market :
Optimization
Part 1 - Existence and Characterisation, 66:6 (2017)
Part 2 - Best Response of Producer, 66:6 (2017).
Let consider a fixed time instant and denote
@ D > 0 be the overall energy demand of all consumers
@ N be the set of producers

@ ¢; > 0 be the production of i-th producer, : € N/

We assume that producer ¢ € A provides to the ISO a quadratic bid
function a;q; + b;q? given by a;, b; > 0.

Similarly, let A;q; + B;q? be the true production cost of i-th producer
with A; > 0 and B; > 0 reflecting the increasing marginal cost of
production.
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Multi-Leader-Common-Follower game

Peculiarity of electricity markets is their bi-level structure:

P;(a—i,b_;, D) maxmax  aigi + big; — (Aigi + Big})
ai,0; 45
a;, bi Z 0
such that
(gj)ien € Qa,b)

where set-valued mapping Q(a,b) denotes solution set of

[50(a,5,D)  Q(a,b) = argmin X,y (asgi + big?)

q
¢G>0, YieN

such that Z g=D
ieEN
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Some motivation examples
Industrial Eco-Parks
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What is an « Eco-park » 7

Example of water management

Stand alone situation
@ In a geographical area,

there are different
companies 1,...,n Fresh water

@ Each of them is buying
fresh water (high price)

for their production
processes

@ Each company generates
some "dirty water" and Company 3
have to pay for discharge

Discharge water
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How dos it work ?

The aims in designing Industrial Eco-park (IEP) are

a) Reduce cost of production of each company

b) Reduce the environmental impact of the whole production

Thus "Eco" of IEP is at the same time Economical and ecological

Didier Aussel



What is an « Eco-park » 7

Example of water management

How to reach these aims?

a) create a network (water =
= L
tubes) between the —tigh P
companies NP &P ==
b) Eventually install some <

regeneration unit
(cleaning of the water)

It is important to understand that this approach is not limited to
water. It can be applied to vapor, gas, coaling fluids, human

resources...
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Kalundborg (Danemark)

An symbolic example of Industrial eco-park is Kalundborg
(Danemark)

Kalundborg Symbiosis

1990-1999

25

<
,,.-”-::‘f":.sé’i”’
e
i Ot-,
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What is an « Eco-park » 7

In order to convince companies to participate to the Ecopark, our
model should guarantee that:

a) each company will have a lower cost of production in Eco-park
organization than in stand-alone organization

b) the eco-park organization must generate a lower freshwater
consumption than with a stand-alone organization

Didier Aussel



MOO classical treatment

The Eco-park design was done through Multi-objective Optimization

by the evaluation of Pareto fronts (Gold programming algorithms,
scalarization...).

Fresh water consumption
Individual costs of producer 1

Individual costs of producer n
Water balances

s.t. Topological constraints
Water quality criteria
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MOO classical treatment

Stand-alone structure

Enterprise 1 2 3 Total
Water flowrate Fresh 98.33 54.64 186.67
(tonne/hr)
Cost (MMUSD/year)  Freshwater+dischar 0.28 0.15 0.52 0.95
ge
Reused water 0.01 0.01 0.02 0.03
Total 0.98

!,‘ )’3 Eco-park structure : MOO approach

Enterprise 1 2 8 Total
Water flowrate Fresh 88.33 20.00 206.02
(tonne/hr)

Shared 76.67 61.04 82.00 219.71

Cost (MMUSD/year) Freshwater+ 0.18 0.11 0.59 0.88

Discharge
Reused 0.01 0.02 0.02 0.06
water

Total 0.94




Alternative approach

The needed change :

...to have an independant designer/regulator
...to have fair solutions for the companies

Thus we propose to use two different possible models:
@ Hierarchical optimisation (bi-level optim.)

@ Nash game concept between the companies
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-Multi-Follower game

LEADER: EIP Authority
Minimize Freshwater Consumption

Subject to:

Objectives of individual plants
Freshwater unit cost
Wastewater treatment unit cost
Subsidy rate fraction

oo foo N

| 1
| plant1 Plant 2 Plant n :
I Minimize Cost, Minimize Cost, Minimize Cost,

I | Subjectto: Subject to: Subject to: !
I | Water balances Water balances Water balances !
1 | Water quality Water quality ¢ o o Water quality I
| | constraints constraints constraints I
1 Topological Topological Topological |
| constraints constraints constraints 1
| FOLLOWERS |




Numerical treatment

This very difficult problem is treated as follows:

o first we replace the lower-level (convex) optimization problem by
their KKT systems; the resulting problem is an Mathematical
Programming with Complementarity Constraints (MPCC);

@ second the MPCC problem is solved by penalization methods

Numerical results have been obtained with Julia meta-solver coupled
with Gurobi, IPOPT and Baron.
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Single-Leader-Multi-Follower game

Stand-alone implementation with regeration units

1 2 3
Enterprise
Water flowrate (tonnethr) Fresh 98.33 22,00 97.50
Regenerated 000 38.17 11146
Cost 2 028 006 027
arge
Reused water o001 002 005
Regenerated 000 008 019
‘water
Total

Nash equilibrium (SLMFG) with regeneration units

Enterprise 1 2 3
Water flowrate (tonne/hr) Freshwater 20.00 2000 20,00
(tonne’hr)
Shared 126.49 149.54 226.66
Regenerated  100.62 64,67 166.64
Cost ) 004 0.02 011
ischarge
Reusedwater  0.04 0.03 0.08

Regenerated

Total

502.69

331.93



More on Single-Leader-Multi-Follower
games

D.A € A. Svensson (J. Optim. Theory Appl. 182 (2019))
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Existence for optimistic SLMF games

Theorem

Assume that F is lower semi-continuous, and for each follower
i=1,..., M the objective f; is continuous and

(x,y—i) = Ci(z,y—:) = {vi | gi(x,y) <0} is a lower semi-continuous
set-valued map which has nonempty compact graph. If the graph of
GNEP is nonempty, then the SLMF game admits an optimistic
solution.
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Example of linear pessimistic SLMF game with no

solutions

Let us consider the SLMFG with two followers

i a — .
Join Dax et (it

with
min,, Y min,, Yo
y1 >0 yg >0
S.t. 2y2 — U1 S 2 s.t. 2y1 — Y2 S 2
Nty y1t+y22>2x
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The solution of the parametric GNEP of the followers is given by

{(0’ O)v (27 2)} if © Z 4a
0,0

GNEP(z) = { {(0,0)} if o € [0,4] (5)
1] otherwise.
Notice that the function
Omaz(z) :=  max —x+ (y1 +y2)
YyEGNEP(x)
o fx=4
Tl —z ifze]0,4]

is not lower semi-continuous, so that Weierstrass theorem argument
cannot be applied. And in fact, the value of the problem of the leader
is —4, while there does not exist a point = € [0, 4] with that value.
The pessimistic linear single-leader-two-follower problem has no
optimal solution.
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Going back to applications: TEP J




Another approach: the blind/control input models

In two very recent works we suggested some reformulations of the
optimal design problem:

@ under some hypothesis (unique process for each company,
linearization in the case of regeneration units), we shown that
the optimal design problem can be reformulated as a classical
Mixed Integer Linear Programming problem (MILP);

@ this problem can be treated with classical tools (CPLEX);

Moreover we inserted a "minimal gain" condition

Cost;(z;, zP

—1%)

2® E) < a;-STC;, Vi€ Ip. J

ensuring that each participating company will gain at minimum a%
on its production cost.
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Another appraoch: the blind/control input model

Theorem

For E € £ and o > 0 fized, the equilibrium set Bq(z®, E) is given by
z(@_i)+ Y, Tki= D, By
(k,i)EE (i,5)€EE
R _ )P gi(z—;) <0
Eq(z",E)=(¢a :Vi€lIlp, zi(z_3) >0 (6)
zi}EC =0
i,act
z; >0
Thus, the optimal design problem is equivalent to
min Z(x)
Ee&,xerl Pmax|
z € X,
zi(z_5) + Z Tp,; =+ Z Ti g, Viel
(k,i)EE (1,4)EE
zi|ge =0, viel (7)
s.t. i,act
gi(z—_;) <0, Viel
zi(x_;) >0, Viel
Cost; (zi, 2L, 2B, E) < a; - STC;, Vie Ip
z > 0.




Some results

Figure: The configuration in the case without regeneration units,
a; = 0.95 and Coef = 1. Gray nodes are consuming strictly positive
fresh water.
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Figure: The number of enterprises operating stand-alone and the
global freshwater consumption with Coef = 1.
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Quasiconvex optimization

Quasiconvexity

A function f : X — IR U {400} is said to be quasiconvex on K if,

for all x, y € K and all t € [0,1],
f(tx + (1 — t)y) < max{f(x), f(y)}.
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Quasiconvex optimization

Quasiconvexity

A function f : X — IR U {400} is said to be quasiconvex on K if,

for all x, y € K and all t € [0,1],
f(tx + (1 — t)y) < max{f(x), f(y)}.

or

for all A € IR, the sublevel set

Sy={xe X : f(x) <A} is convex.
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Quasiconvex optimization

Quasiconvexity

A function f : X — IR U {400} is said to be quasiconvex on K if,

for all x, y € K and all t € [0,1],
f(tx + (1 — t)y) < max{f(x), f(y)}.

or

for all A € IR, the sublevel set

Sy={xe X : f(x) <A} is convex.

or

f differentiable

f is quasiconvex <= df is quasimonotone
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Quasiconvex optimization

Quasiconvexity

A function f : X — IR U {400} is said to be quasiconvex on K if,

for all x, y € K and all t € [0,1],
f(tx + (1 — t)y) < max{f(x), f(y)}.

or

for all A € IR, the sublevel set

Sy={xe X : f(x) <A} is convex.

or

f differentiable

f is quasiconvex <= df is quasimonotone

or

f is quasiconvex <= Of is quasimonotone J
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Quasiconvex optimization

Quasiconvexity

A function f : X — IR U {400} is said to be quasiconvex on K if,
for all A € IR, the sublevel set

Sy={xeX : f(x) <A} is convex.

A function f : X — IR U {400} is said to be semistrictly quasiconvex
on K if, f is quasiconvex and for any x,y € K,

f(x)<fly)="f(z)<f(y), Vze][xyl
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Quasiconvex optimization

Why not a subdifferential for quasiconvex programming?
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Quasiconvex optimization

Why not a subdifferential for quasiconvex programming?

@ No (upper) semicontinuity of Of if f is not supposed to be
Lipschitz
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Quasiconvex optimization

Why not a subdifferential for quasiconvex programming?

@ No (upper) semicontinuity of Of if f is not supposed to be
Lipschitz

@ No sufficient optimality condition

X € Ser(OF, C) == X € arg min £
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Quasiconvex optimization

a- First definitions

Didier Aussel Univ. de Perpignan, France MLFG in the setting of quasiconvex optimization



Quasiconvex optimization

A first approach

Sublevel set:

Sy={xeX : f(x) <A}
Sy ={xeX : f(x) <A}

Normal operator:

Define Ne(x) : X — 2X" by

Nf(X) = N(Sf(x),X)
={xreX" : {x,y—x) <0, Vy€ S}

With the corresponding definition for N7 (x)
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Quasiconvex optimization

@ N¢(x) = N(S¢(x), x) has no upper-semicontinuity properties

® N7 (x) = N(Sf ) x) has no quasimonotonicity properties
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Quasiconvex optimization

@ N¢(x) = N(S¢(x), x) has no upper-semicontinuity properties

® N7 (x) = N(Sf ) x) has no quasimonotonicity properties

Define f : R — R by

Then f is quasiconvex.
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Quasiconvex optimization

@ N¢(x) = N(S¢(x), x) has no upper-semicontinuity properties

® N7 (x) = N(Sf ) x) has no quasimonotonicity properties

Define f : R — R by

Then f is quasiconvex.
Consider x = (10, 0), x* = (1,2), y = (0,10) and y* = (2, 1).

We see that x* € N<(x) and y* € N< (y) (since |a| + |b| < 1 implies (1,2) - (a — 10, b) < 0 and

(2,1) - (a, b — 10) < 0) while (x*,y — x) > 0 and (y*,y — x) < 0. Hence N is.not quasimonotone.
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Quasiconvex optimization

But ...another example

@ N¢(x) = N(S¢(x), x) has no upper-semicontinuity properties

o N7 (x) = N(Sf>(X),x) has no quasimonotonicity properties

Then f is quasiconvex.
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Quasiconvex optimization

But ...another example

@ N¢(x) = N(S¢(x), x) has no upper-semicontinuity properties

o N7 (x) = N(Sf>(X),x) has no quasimonotonicity properties

Then f is quasiconvex.

We easily see that N(x) is not upper semicontinuous....
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Quasiconvex optimization

But ...another example

@ N¢(x) = N(S¢(x), x) has no upper-semicontinuity properties

o N7 (x) = N(Sf>(X),x) has no quasimonotonicity properties

Then f is quasiconvex.

We easily see that N(x) is not upper semicontinuous....
These two operators are essentially adapted to the class of semi-strictly
quasiconvex functions. Indeed in this case, for each x € dom f \ argmin f,
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Quasiconvex optimization

b- Adjusted sublevel sets
and
normal operator
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Quasiconvex optimization

Definition

For any x € dom f, we define

S7(x) = Srp N B(S5: px) J

where p, = dist(x, Sﬁx))v if 5f<(x) 70
and S7(x) = S¢( if Sf<(x) = 0.
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Quasiconvex optimization

Definition

For any x € dom f, we define

S7(x) = Sr(x) N B(S5y: %) J

where p, = dist(x, Sﬁx))v if 5f<(x) 70
and S7(x) = S¢( if Sf<(x) = 0.

@ 57(x) coincides with S¢(x) if cl(S7,)) = Sr(x)

Didier Aussel Univ. de Perpignan, France MLFG in the setting of quasiconvex optimization



Quasiconvex optimization

Definition

For any x € dom f, we define

S7(x) = Srp N B(S5: px) J

where p, = dist(x, Sﬁx))v if 5f<(x) 70
and S7(x) = S¢( if Sf<(x) = 0.

@ 57(x) coincides with S¢(x) if cl(S7,)) = Sr(x)

e.g. f is semistrictly quasiconvex
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Quasiconvex optimization

Definition

For any x € dom f, we define

S7(x) = Srp N B(S5: px) J

where p, = dist(x, 5§X)), if 5f<(x) 70
and S7(x) = S¢( if Sf<(x) = 0.

@ 57(x) coincides with S¢(x) if cl(S7,)) = Sr(x)

e.g. f is semistrictly quasiconvex

Proposition

Let f : X = IR U {400} be any function, with domain dom f. Then

f is quasiconvex <= S7(x) is convex ,¥ x € dom f.
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Quasiconvex optimization

Adjusted normal operator

Adjusted sublevel set:

For any x € dom f, we define

SP(x) = Se() N B(S5,, %) J

where p, = dist(x, S5,)). if S5,y # 0.

Ajusted normal operator:

N2(x) = {x* € X* : (x*,y —x) <0, Vye S(x)} |
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Quasiconvex optimization

Example
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Quasiconvex optimization

Example

S3() = S:(x) N B(SF . 2)
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Quasiconvex optimization

Example

S2(x) = 5¢(x) N B(S7y» %)
Ni(x) = {x* € X* : (x'.y—x) <0, VyeSp(x))
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Quasiconvex optimization

An exercice

Let us draw the normal operator value N?(x, y) at the points
(x,y) =(0.5,0.5), (x,y) = (0,1), (x,y) = (1,0), (x,y) = (1,2),
(x,y) =(1.5,0) and (x, y) = (0.57 2).

/
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Quasiconvex optimization

An exercice

Let us draw the normal operator value N?(x, y) at the points

xy)
(x,¥) =(0.5,0.5), (x,y) = (0,1), (x,y) = (1,0), (x,¥) = (1,2),
(x,y) =(1.5,0) and (x,y) = (0.5,2).

Operator N? provide information at any point!!! J
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Quasiconvex optimization

Basic properties of N?

Proposition

Let f: X - IR U {400} be Isc. Assume that rad. continuous on dom f
or dom f is convex and intSy # 0, VX > infx f. Then

f is quasiconvex < N2(x)\ {0} #0, Vx & domf \argminf.

The normal operator N7 is always quasimonotone
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Quasiconvex optimization

Upper sign-continuity

o T: X — 2% is said to be upper sign-continuous on K iff for any
x,y € K, one have :

Vtelo, 1], X*Eir}f(x)w,y_x) >0

= sup (x*,y—x)>0
x*E€T(x)

where x; = (1 — t)x + ty.

upper semi-continuous

4

upper hemicontinuous

I

upper sign-continuous
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Quasiconvex optimization

locally upper sign continuity

Definition

Let T : K — 2X" be a set-valued map.

T is called locally upper sign-continuous on K if, for any x € K there
exist a neigh. V, of x and a upper sign-continuous set-valued map
&, (-) : Ve = 2% with nonempty convex w*-compact values such that

bu(y) € T(y)\ {0}, Vy € Vi
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Quasiconvex optimization

locally upper sign continuity

Definition

Let T : K — 2X" be a set-valued map.

T is called locally upper sign-continuous on K if, for any x € K there
exist a neigh. V, of x and a upper sign-continuous set-valued map
&, (-) : Ve = 2% with nonempty convex w*-compact values such that

bu(y) € T(y)\ {0}, Vy € Vi

Proposition

Let f be Isc quasiconvex function such that int(Sy) # 0, VA > inf f.

Then N2 is locally upper sign-continuous on dom f \ arg min f.

Didier Aussel Univ. de Perpignan, France MLFG in the setting of quasiconvex optimization



Quasiconvex optimization

a- Optimality conditions
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Quasiconvex optimization

Quasiconvex programming

Let f: X - RU{+o0} and K C dom f be a convex subset.

(P)  findx €K : f(x)=inf f(x)
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Quasiconvex optimization

Quasiconvex programming

Let f: X - RU{+o0} and K C dom f be a convex subset.

(P)  findx €K : f(x)=inf f(x)

f: X —=TRU{+oco} a proper convex function
K a nonempty convex subset of X, x € K + C.Q.

Then

f(%) = inf f(x) <= X € Su(0F, K)
S
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Quasiconvex optimization

Quasiconvex programming

Let f: X - RU{+o0} and K C dom f be a convex subset.

(P)  findx €K : f(x)=inf f(x)

f: X —=TRU{+oco} a proper convex function
K a nonempty convex subset of X, x € K + C.Q.

Then
f(x)=inf f(x) <= Xx¢& S4(0f,K)

X € Sqir(Of (X >¢<< € arg m|n f
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Quasiconvex optimization

Sufficient optimality condition

f: X = IRU{+o0} quasiconvex, radially cont. on dom f

C C X such that conv(C) C dom f.
Suppose that C C int(dom f) or AffC = X.

Thenx € S(N2\ {0},C) = Vxe C, f(x)< f(x).

where x € S(N7 \ {0}, K) means that there exists x* € N7(x) \ {0} such that

(x",c—x) >0, VeceC.
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Quasiconvex optimization

Necessary and Sufficient conditions

Proposition

Let C be a closed convex subset of X, x € C and f : X — IR be
continuous semistrictly quasiconvex such that int(S2(X)) # (0 and
f(x) > infx f.

Then the following assertions are equivalent:

€ S« (N7 \ {0}, C)
e N2() \ {0} + NK(C,%).
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Now the case of GNEP...

GNEP reformulation in quasiconvex case

To simplify the notations, we will denote, for any i and any x € R", by Si(x)
and A;(x™") the subsets of R"

Six) = Siya-n() and Ax) = argmin0i(,x ).

In order to construct the variational inequality problem we define the following
set-valued map N2 : R” — 2% which is described,

for any x = (x*,...,x?) ER™ x ... x R™, by
Ny (x) = Fi(x) x ... x Fp(x),
Bi(0,1) if x" € Ai(x™)

where Fi(x) = :
co(Ng.(x') N Si(0,1))  otherwise

The set-valued map Nj has nonempty convex compact values.
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Now the case of GNEP...

Sufficient condition

In the following we assume that X is a given nonempty subset X of R”, such that for any i, the set X,-(xf'.) is
given as

Xi(x"y={x er:(x,x"") e x}.

Let us assume that, for any i, the function 0; is continuous and
quasiconvex with respect to the i-th variable. Then every solution of
S(N§, X) is a solution of the GNEP.
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Now the case of GNEP...

Sufficient condition

In the following we assume that X is a given nonempty subset X of R”, such that for any i, the set X,-(xf'.) is
given as

Xi(x"y={x er:(x,x"") e x}.

Let us assume that, for any i, the function 0; is continuous and
quasiconvex with respect to the i-th variable. Then every solution of
S(N§, X) is a solution of the GNEP.

Note that the link between GNEP and variational inequality is valid even
if the constraint set X is neither convex nor compact.
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Now the case of GNEP...

Let i € {1,...,p}. If the function 6; is continuous quasiconvex with
respect to the i-th variable, then,

0c F(R) < X' cA(x).

It is sufficient to consider the case of a point X such that X' & A;(x~'). Since 0;(-, x~') is continuous at
%', the interior of S;(X) is nonempty. Let us denote by K; the convex cone

Ki = NG, () = (Si(x) — x)°.

By quasiconvexity of 6;, K; is not reduced to {0}. Let us first observe that, since 5;(X) has a nonempty interior,
K; is a pointed cone, that is K; N (—K;) = {0}.

Now let us suppose that 0 € F;(x). By Caratheodory theorem, there exist vectors v; € [K; N 5;(0, 1)],
i=1,...,n+1landscalars \; > 0,i=1,...,n+ 1 with

n+l n+l

STAi=1and0=>" Xy
i=1 i=1
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Now the case of GNEP...

Since there exists at least one r € {1, ..., n+ 1} such that A, > 0 we have
ntly
!
vp = — — v
r ;Z I i
i=1,i#r

which clearly shows that v, is an element of the convex cone —K;. But v, € 5;(0, 1) and thus v, # 0. This
contradicts the fact that K; is pointed and the proof is complete.
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Now the case of GNEP...

Proof of necessary condition

Let us consider X to be a solution of S(Ng, X). There exists v € N(x) such that
(viy =%) 20, VyeX. (x)

Let.ie{l,“'.,p}. ) )

If X' € A;(x~") then obviously X' € Sol;(x™").

Otherwise v/ € F;(x) = co(N§.(x') N 5;(0, 1)). Thus, according to Lemma 2, there exist A > 0 and
i

u e Nzl_(i]) \ {0} satisfying v/ = Au'.
Now for any x' € X;(x '), consider y = ()'(1, LR T R ,)‘(").

From (*) one immediately obtains that (u, x' — X') > 0. Since x' is an arbitrary element of X;(x '), we have
that X' is a solution of S(Ng. \ {0}, X;(x~")) and therefore, according to Prop. 4,
!

% € Soli(x™")

Since i was arbitrarily chosen we conclude that X solves the GNEP.
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Now the case of GNEP...

Necessary and sufficient condition

Theorem

Let us suppose that, for any i, the loss function 6; is continuous and
semistrictly quasiconvex with respect to the i-th variable. Further assume
that the set X is a nonempty convex subset of RN. Then

any solution of the variational inequality S(Ng, X) is a solution
of the GNEP

any solution of the GNEP is a solution of the quasi-variational
inequality QVI(Nj, X)

‘mwcére X stands for the set-valued map defined on R? by

D.A. & J. Dutta, Oper. Res. Letters, 2008.
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