ADP via speed regulation 00

 $\begin{array}{c} \text{Cut generation algorithm} \\ \text{00} \end{array}$

Aircraft deconfliction via Bilevel Programming

Martina Cerulli

mcerulli@lix.polytechnique.fr

LIX - École polytechnique - CNRS

2020, October

1/6

ADP via speed regulation

 $\begin{array}{c} \text{Cut generation algorithm} \\ \text{00} \end{array}$

Aircraft deconfliction

- aircraft speed changes (SRADP)
- heading angle changes (HACADP)¹

¹M. Cerulli, C. D'Ambrosio, L. Liberti, M. Pelegrín: Detecting and solving aircraft conflicts using bilevel programming, *submitted paper*

Int	rod	uct	ion
0			

Sets, parameters, variables

Sets:

- $A = \{1, \dots, n\}$ is the set of aircraft
- $K = \{1, \dots, k_{max}\}$ is the set of dimension indices

Parameters:

- T is the length of the time horizon taken into account [hours]
- **d** is the <u>minimum required safety distance</u> between a pair of aircraft [Nautical Miles NM]
- x_{ik}^0 is the k-th component of the initial position of aircraft i
- v_i is the initial speed of aircraft i [NM/h]
- u_{ik} is the k-th component of the direction of aircraft i
- q_i^{min} and q_i^{max} are the bounds on the speed modification ratios for each aircraft i

Variables:

• q_i is the ratio of the implemented speed w.r.t. the initally planned speed of *i*: $q_i = 1$ if the speed remains constant, $q_i > 1$ if it is increased, $q_i < 1$ if it is decreased. (q_i is constant in the time horizon considered)

ADP via speed regulation $\circ \bullet$

 $\begin{array}{c} {\sf Cut \ generation \ algorithm} \\ {\circ \circ} \end{array}$

Bilevel formulation

$$\begin{split} \min_{\boldsymbol{q},t} & \sum_{i \in A} (\boldsymbol{q}_i - 1)^2 \\ \forall i \in A \quad \boldsymbol{q}_i^{\min} \leq \boldsymbol{q}_i \leq \boldsymbol{q}_i^{\max} \\ \forall i < j \in A \quad \min_{t_{ij} \in [0,T]} \sum_{k \in K} \left((x_{ik}^0 - x_{jk}^0) + t_{ij} (\boldsymbol{q}_i v_i u_{ik} - \boldsymbol{q}_j v_j u_{jk}) \right)^2 \geq d^2 \end{split}$$

- Single level reformulation (e.g. using KKT or Dual of the lower level)
- Cut generation algorithm

ADP via speed regulation

Cut generation algorithm ${\bullet}{\circ}$

Cut generation algorithm for SRADP

- Let h = 1. Initialize the relaxation R_h of the bilevel program, obtained by considering the upper-level problem only.
- 2 Solve R_h to obtain the optimal solution q^* .
- So For each aircraft pair (i, j), compute the instant $\tau_{ij}^h \in [0, T]$ as

$$\tau_{ij}^{h} = \min\left\{\max\left\{0, -\frac{\sum_{k \in \mathcal{K}} (x_{ik}^{0} - x_{jk}^{0})(q_{i}^{*}v_{i}u_{ik} - q_{j}^{*}v_{j}u_{jk})}{\sum_{k \in \mathcal{K}} (q_{i}^{*}v_{i}u_{ik} - q_{j}^{*}v_{j}u_{jk})^{2}}\right\}, T\right\}$$

• If $\sum_{k \in K} ((x_{ik}^0 - x_{jk}^0) + \tau_{ij}^h (q_i^* v_i u_{ik} - q_j^* v_j u_{jk}))^2 \ge d^2 \quad \forall i < j \in A$

the algorithm terminates and q^* is the optimal bilevel solution. Else, for each pair (i, j) violating the inequality, define R_{h+1} as R_h with the adjoined inequality:

$$\sum_{k\in K}((x_{ik}^0-x_{jk}^0)+\tau_{ij}^h(q_iv_iu_{ik}-q_jv_ju_{jk}))^2\geq d^2.$$

9 Put h := h + 1 and go back to 2.

Thanks for your attention!