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Bilevel Optimization

General bilevel optimization problem

min
x∈X ,y∈Y

F (x , y) (1)

G (x , y) ≤ 0 (2)

y ∈ arg min
y ′∈Y
{f (x , y ′) : g(x , y ′) ≤ 0 } (3)

• Stackelberg game: two-person sequential game

• Leader takes follower’s optimal reaction into account

• Nx = {1, . . . , n1}, Ny = {1, . . . , n2}, n = n1 + n2: total number of decision
variables

• Solution y of the follower: optimal follower’s response

• Sets X and Y are Rn1 and Rn2 , respectively, extended with constraints
regarding possible discrete variables
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Value Function Reformulation

Using the Value Function

Φ(x) = min
y ′∈Y
{f (x , y ′) : g(x , y ′) ≤ 0 },

we can reformulate the bilevel optimization problem as

min
x∈X ,y∈Y

F (x , y) (4a)

G (x , y) ≤ 0 (4b)

g(x , y) ≤ 0 (4c)

f (x , y) ≤ Φ(x) (4d)

• (4c): solution y must be feasible for the follower

• (4d): guarantees that y is the optimal follower’s response for a given x

• At optimality, equality is attained in (4d)
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Some Notation

Follower’s Feasible Region for a given x

Ω(x) = {y : g(x , y) ≤ 0, y ∈ Y }.

Follower’s Rational Reaction Set for a given x

R(x) = {y : y ∈ arg min{f (x , y) : g(x , y) ≤ 0, y ∈ Y }}.

Bilevel Feasible Set (also called Inducible Region (IR))

IR = {(x , y) : x ∈ X ,G (x , y) ≤ 0, y ∈ R(x)}.

The problem is now reformulated as:

min{F (x , y) : (x , y) ∈ IR}.
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Optimistic vs Pessimistic Solution

The Stackelberg game under:

• Perfect information: the leader has a perfect knowledge of the follower’s
strategy

• Rationality: agents act optimally, according to their respective goals

• What if there are multiple optimal solutions for the follower?
I Optimistic Solution: among the follower’s solution, the one leading to the

best outcome for the leader is assumed
I Pessimistic Solution: among the follower’s solution, the one leading to the

worst outcome for the leader is assumed
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Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP)

(MIBLP) min cTx x + cTy y (5a)

Gxx + Gyy ≤ q (5b)

xj integer,∀j ∈ Jx (5c)

(x , y) ∈ Rn (5d)

y ∈ arg min{dT y : Ax + By ≤ b, (5e)

yj integer,∀j ∈ Jy} (5f)

• cx , cy , q, b,Gx ,Gy ,A,B: given rational matrices/vectors of appropriate size

• Jx ⊆ Nx and Jy ⊆ Ny : the index sets of variables that have to be integer

• Linking constraints: (5b)

• If Gy = 0: the problems can be tackled by a Benders-like decomposition
(projecting out y variables)
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Complexity

Bilevel Linear Programs

Bilevel LPs are strongly NP-hard (Audet et al. [1997], Hansen et al. [1992]).

min cT x

Ax = b

x ∈ {0, 1}
⇔

min
x,y

cT x

Ax = b

y = 0

y ∈ arg max{y ′ : y ′ ≤ x , y ′ ≤ 1− x , y ′ ≥ 0}

x

y’
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Complexity

Checking Feasibility

Given a vector (x∗, y∗), it is in general NP-complete to check whether this point
is feasible for the MIBLP or not.

MIBLP

min cTx x + cTy y

Gxx + Gyy ≤ q

xj integer,∀j ∈ Jx

(x , y) ∈ Rn

dT y≤ Φ(x)

The Value Function constraint

Checking dT y∗ ≤ Φ(x∗) requires
finding the optimal solution of the
MILP:

Φ(x∗) = min {dT y

By ≤ b − Ax∗,

yj integer,∀j ∈ Jy}
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Complexity

Bilevel Mixed-Integer Linear Programs

MIBLP is ΣP
2 -hard (Lodi et al. [2014]): there is no way of formulating MIBLP as a

MILP of polynomial size unless the polynomial hierarchy collapses.

ΣP
2 -hard: the class of problems that can be solved in non-deterministic polynomial

time, given an NP oracle.
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Overview

Part I
• Develop a finitely convergent branch-and-bound approach (under certain

conditions)

• Capable of dealing with unboundedness and infeasibility

• Introduce intersection cuts to speed-up convergence

Part II
• Introduce a fully-fledged branch-and-cut for MIBLPs

Part III
• Branch-and-cut for MIBLPs with Interdiction Structure
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PART I:
VALUE FUNCTION
REFORMULATION
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Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP)
Value Function Reformulation:

(MIBLP) min cTx x + cTy y (6)

Gxx + Gyy ≤ q (7)

Ax + By ≤ b (8)

(x , y) ∈ Rn (9)

dT y ≤ Φ(x) (10)

xj integer, ∀j ∈ Jx (11)

yj integer, ∀j ∈ Jy (12)

where Φ(x) is non-convex, non-continuous:

Φ(x) = min{dT y : By ≤ b − Ax , yj integer,∀j ∈ Jy}

• dropping dT y ≤ Φ(x) → High Point Relaxation (HPR) which is a MILP →
we can use MILP solvers with all their tricks

• let HPR be LP-relaxation of HPR
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Example from Moore and Bard [1990]

• HPR, HPR, IR

• value-function reformulation

• Recall: for bilevel LPs, optimal solution is a vertex of the HPR=HPR
polytope. However, for MIBLPs, optimal solution can be in the interior of the
conv(HPR).

min
x∈Z
−x − 10y

y ∈ arg min
y ′∈Z
{y ′ :

−25x + 20y ′ ≤ 30

x + 2y ′ ≤ 10

2x − y ′ ≤ 15

2x + 10y ′ ≥ 15} x

y

1 2 3 4 5 6 7 8

1

2

3

4

Φ(x)
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(Un)expected Difficulties: Relaxing integrality constraints

• Relax both x ∈ Z, y ′ ∈ Z into (x , y ′) ∈ R2

min
x∈R
−x − 10y

y ∈ arg min
y ′∈R
{y ′ :

−25x + 20y ′ ≤ 30

x + 2y ′ ≤ 10

2x − y ′ ≤ 15

2x + 10y ′ ≥ 15}

x

y

1 2 3 4 5 6 7 8

1

2

3

4

Φ(x)
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• Relax both x ∈ Z, y ′ ∈ Z into (x , y ′) ∈ R2

min
x∈R
−x − 10y

y ≤ Φr (x)

• Constraints x ∈ Z are relaxed into
x ∈ R

• Constraints dT y ≤ Φ(x) are
over-restricted into dT y ≤ Φr (x)

• Neither valid LB nor UB can be
obtained!

• IR of the LP-relaxation does not
even contain the IR!

• HPR is the right way to go

x

y

1 2 3 4 5 6 7 8

1

2

3

4

Φ(x)
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General Idea

General Procedure

• Start with the HPR- (or HPR-)relaxation

• Get rid of bilevel infeasible solutions on the fly

• Apply branch-and-bound or branch-and-cut algorithm

There are some unexpected difficulties along the way...

• HPR can be unbounded

• Optimal solution can be unattainable
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(Un)expected Difficulties: Unbounded HPR-Relaxation

Example from Xu and Wang [2014]

Unboundness of HPR-relaxation does not allow to draw conclusions on the
optimal solution of MIBLP

• unbounded

• infeasible

• admit an optimal solution

Bilevel problem:

max
x,y

x + y

0 ≤ x ≤ 2

x ∈ Z
y ∈ arg max

y ′
{d · y ′ : y ′ ≥ x , y ′ ∈ Z}.

HPR:

max
x,y

x + y

0 ≤ x ≤ 2

y ≥ x

x , y ∈ Z

d = 1 ⇒ Φ(x) =∞ (MIBLP infeasible)

d = 0 ⇒ Φ(x) feasible for all y ∈ Z (MIBLP unbounded)

d = −1 ⇒ x∗ = 2, y∗ = 2 (optimal MIBLP solution)
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Classification

Assume that variables are bounded and that HPR is feasible
Can the optimal solution always be attained?

Mixed-Integer UL
Continuous LL

Discrete UL
Mixed-Integer LL

Continuous UL
Mixed-Integer LL

MIBLP

Use standard 
reformulation 
techniques from 
the linear 
bilevel 
optimization

Enumeration 
guarantees 
the existence 
of optimal 
solution

Mixed-Integer UL
Mixed-Integer LL

Optimal solution may not be 
attainable if a linking variable 
from the upper level is continuous!
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(Un)expected Difficulties: Unattainable Solutions

Example from Köppe et al. [2010]

Continuous variables in the UL, integer
variables in the LL ⇒ optimal solution
may be unattainable

inf
x,y

x − y

0 ≤ x ≤ 1

y ∈ arg min
y ′∈Z
{y ′ : y ′ ≥ x , 0 ≤ y ′ ≤ 1}.

Equivalent to

inf
x
{x − dxe : 0 ≤ x ≤ 1}

x

y

1

1

• Bilevel feasible set is
neither convex nor
closed.

• See also Vicente et al.
[1996].

To guarantee finite termination:

The follower subproblem depends only on integer leader variables JF ⊆ Jx
(linking variables).
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BRANCH-AND-BOUND
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Some Basic Assumptions

Assumption 1

The HPR feasible set is a bounded polyhedron.

Assumption 2

Continuous leader variables xj (if any) do not appear in the follower problem.

Assumption 3

For any HPR solution (x , .), the follower MILP is well defined and has a finite
optimal solution.

If for all HPR solutions, the follower MILP is unbounded ⇒ MIBLP is infeasible.
Preprocessing (solving a single LP) allows to check this (see Theorem 1 in
Fischetti et al. [2018]).
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A Brute Force Approach

Recall

Continuous leader variables xj (if any) do not appear in the follower problem. The
linking variables from JF ⊆ Jx are bounded and can take only integer values.

Enumeration
Try all possible combinations of discrete values for xj = x∗j , j ∈ JF , and choose
the best from the IR. Requires solving two MILPs:

• Φ(x∗)

• refined HPR

min
x∈X ,y∈Y

F (x , y) (13a)

G (x , y) ≤ 0 (13b)

g(x , y) ≤ 0 (13c)

f (x , y) ≤ Φ(x∗) (13d)

xj = x∗j , j ∈ JF (13e)
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General Idea

Branch-and-Bound for the Value Function Reformulation

Solve HPR and enforce dT y ≤ Φ(x) on the fly, by branching and/or cutting.

Given optimal vertex (x∗, y∗) of HPR

• (x∗, y∗) infeasible for HPR (i.e., fractional) → branch as usual

• (x∗, y∗) feasible for HPR and f (x∗, y∗) ≤ Φ(x∗) → update the incumbent as
usual

• (x∗, y∗) feasible for HPR and f (x∗, y∗) > Φ(x∗), i.e., bilevel-infeasible →
we need to do something!
I Generate a valid inequality violated by (x∗, y∗): DeNegre [2011], Tahernejad

et al. [2020], Fischetti et al. [2018, 2017]
I Improve the approximation of the value function so that (x∗, y∗) is no longer

feasible: Lozano and Smith [2017], Kleniati and Adjiman [2015]
I Branch on a disjunction violated by (x∗, y∗): Xu [2012], Wang and Xu [2017],

Xu and Wang [2014], Moore and Bard [1990], Fischetti et al. [2018]
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Algorithm 1: A branch-and-bound scheme for MIBLP, Fischetti et al. [2018]

Apply a standard LP-based B&B to HPR, inhibit incumbent update ;
for each unfathomed B&B node where standard branching cannot be
performed do

Let (x∗, y∗) be the integer HPR solution at the current node;
Compute Φ(x∗) by solving the follower MILP for x = x∗;

if dT y∗ ≤ Φ(x∗) then
The current solution (x∗, y∗) is bilevel feasible: update the incumbent

and fathom the current node
else

if not all variables xj with j ∈ JF are fixed by branching then
Branch on any xj (j ∈ JF ) not fixed by branching yet, even if x∗j is

integer, so as to reduce its domain in both child nodes
else

let (x̂ , ŷ) be an optimal solution of the refined HPR at the current
node;

Possibly update the incumbent with (x̂ , ŷ), and fathom the current
node

end

end

end
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INTERSECTION CUTS
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Intersection Cuts (ICs), Balas [1971]

• powerful tool to separate a bilevel infeasible point (x∗, y∗) from the inducible
region (IR) by a linear cut

IC

• what we need to derive ICs
I a cone pointed at (x∗, y∗) containing the IR (if (x∗, y∗) is a vertex of

HPR-relaxation, a possible cone comes from LP-basis
I a convex set S with (x∗, y∗) but no bilevel feasible points ((x , y) ∈ IR) in its

interior
I important: (x∗, y∗) should not be on the frontier of S .
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Intersection Cuts for Bilevel Optimization

• we need a bilevel-free set S

Theorem (Fischetti et al. [2018])

For any feasible solution of the follower ŷ ∈ Rn2 , the set

S(ŷ) = {(x , y) ∈ Rn : dT y > dT ŷ , Ax + Bŷ ≤ b}

does not contain any bilevel-feasible point (not even on its frontier).

• note: S(ŷ) is a polyhedron

• problem: bilevel-infeasible (x∗, y∗) can be on the frontier of bilevel-free set
S → IC based on S(ŷ) may not be able to cut off (x∗, y∗)
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Intersection Cuts for Bilevel Optimization

Assumption

Ax + By − b is integer for all HPR solutions (x , y).

Theorem

Under the previous assumption, for any feasible solution of the follower ŷ ∈ Rn2 ,
the extended polyhedron

S+(ŷ) = {(x , y) ∈ Rn : dT y ≥ dT ŷ , Ax + Bŷ ≤ b + 1}, (14)

where 1 = (1, · · · , 1) denote a vector of all ones of suitable size, does not contain
any bilevel feasible point in its interior.
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Intersection Cuts for Bilevel Optimization

• application sketch on the example from Moore and Bard [1990]

• solve HPR→ obtain (x∗, y∗) = (2, 4) and LP-cone, take ŷ = 2

• solve HPR again → obtain (x∗, y∗) = (6, 2) and LP-cone, take ŷ = 1

min
x∈Z
−x − 10y

y ∈ arg min
y ′∈Z
{y ′ :

−25x + 20y ′ ≤ 30

x + 2y ′ ≤ 10

2x − y ′ ≤ 15

2x + 10y ′ ≥ 15} x

y

1 2 3 4 5 6 7 8

1

2

3

4
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Separating Intersection Cuts

• given bilevel infeasible (x∗, y∗), how do we determine convex bilevel-free set
S+(ŷ)?

• a natural option: use the optimal solution ŷ of the follower subproblem
for x = x∗

I needs to be solved in any case to check bilevel-feasibility of (x∗, y∗)

• separation procedure is a MILP:

SEP− 1 : ŷ ∈ arg min{dT y

Ax∗ + By ≤ b

yj integer ∀j ∈ Jy}

SEP-1 maximizes distance of (x∗, y∗) to dT y ≥ dT ŷ .
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COMPUTATIONAL RESULTS
(First insights about usefulness of

intersection cuts)
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Computational Results

C, CPLEX 12.6.3, Intel Xeon E3-1220V2 3.1 GHz, four threads

Table: Our testbed. Column #inst reports the total number of instances in the class,
while column type indicates whether the instances are binary (B) or integer (I).

Class source # inst type Notes

DENEGRE DeNegre [2011] 50 I randomly generated
INTERDICTION DeNegre [2011] 125 B interdiction inst.s
MIPLIB Fischetti et al. [2016] 57 B from MIPLIB 3.0

Table: Our tested settings.
#cutsr/#cutso : maximum number of cuts added at root node/all other nodes

Name Sep. #cutsr #cutso

SEP-1a SEP-1 20 20
SEP-1b SEP-1 20 0

BENCHMARK our benchmark code implementing cuts in DeNegre [2011]
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Computational Results

Table: Summary of obtained results. We report the number of solved instances (#), the
shifted geometric mean for computing time (t[s]) and for number of nodes (nodes), and
the average gaps (g [%]).

MIPLIB (57 inst.s) INTERDICTION (125 inst.s) DENEGRE (50 inst.s)
setting # t[s] nodes g [%] # t[s] nodes g [%] # t[s] nodes g [%]

SEP-1a 20 599 9655.9 27.65 83 148 36769.3 33.06 42 40 574.0 4.61
SEP-1b 18 660 100475.8 27.85 64 245 240859.4 48.39 45 35 12452.1 3.89

BENCHMARK 15 954 234670.7 31.78 44 496 1310639.5 63.45 38 58 27918.5 9.20
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Computational Results

Figure: Performance profile plot over all instances (classes DENEGRE, INTERDICTION and
MIPLIB).
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The leftmost point of the graph for a setting s shows the percentage of instances
for which s is the fastest setting.
The rightmost point shows the percentage of instances solved to optimality by s.
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PART II:
MILP-BASED SOLVER for MIBLP
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MILP-based solver for MIBLP

Basic Solution Scheme

• standard simplex-based branch-and-cut algorithm . . .

• . . . that enforces dT y ≤ Φ(x), on the fly, by adding cutting planes.

Additional features:

• Intersection Cuts (ICs):
I New families of ICs;
I Separation of ICs.

• Follower preprocessing.

• Follower Upper-Bound cuts.

Ivana Ljubić (ESSEC) Exact General-Purpose Solvers for MIBLPs Autumn School on Bilevel Opt., Oct 12-14, 2020 34



MORE ON INTERSECTION
CUTS
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Intersection Cuts (ICs)

• Main ingredient of our basic branch-and-cut algorithm.

• Given an infeasible x∗ and the associated simplex cone, the definition of an
IC asks for the definition of a convex set S with x∗ but no bilevel-feasible
x ∈ X in its interior.

• The choice of bilevel-free polyhedra is not unique.

• The larger the bilevel-free set, the better the IC.

Theorem
Given ŷ ∈ Rn

2 such that ŷj integer ∀j ∈ Jy , the following set

S+(ŷ) = {(x , y) ∈ Rn : dT y ≥ dT ŷ , Ax + Bŷ ≤ b + 1}

is bilevel-feasible free.
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Other Bilevel-Free Sets can be defined

Motivated by the results Xu [2012], Wang and Xu [2017]:
Assumption: Ax + By − b is integer for all HPR solutions (x , y).

Theorem (Xu [2012], Wang and Xu [2017], Fischetti et al. [2017])

Given ∆ŷ ∈ Rn
2 such that dT∆ŷ < 0 and ∆ŷj integer ∀j ∈ Jy , the following set

X+(∆ŷ) = {(x , y) ∈ Rn : Ax + By + B∆ŷ ≤ b + 1}

has no bilevel-feasible points in its interior.

Proof: by contradiction. Assume (x̃ , ỹ) ∈ X+(∆ŷ) is bilevel-feasible. But then,
dT ỹ > dT (ỹ + ∆ŷ) and (x̃ , ỹ + ∆ŷ) is feasible for the follower, hence
contradiction.
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Hypercube Intersection Cuts

• Simple polyhedron that can be used to generate IC even when Ax + By − b
is NOT integer.

Theorem (Fischetti et al. [2017])

Assume JF := {j ∈ Nx : Aj 6= 0} ⊆ Jx and let (x̂ , ŷ) an optimal bilevel-feasible
solution with x̂j = x∗j ∀j ∈ JF (if any). Then the following hypercube

HC+(x∗) = {(x , y) ∈ Rn : x∗j − 1 ≤ xj ≤ x∗j + 1, ∀j ∈ JF}

does not contain any bilevel-feasible solution (or any bilevel-feasible solution
strictly better than (x̂ , ŷ), if the latter is defined) in its interior.

• Idea: the interior of HC+(x∗) only contains bilevel-feasible solutions (x , y)
with xj = x̂j = x∗j ∀j ∈ JF
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SEPARATION of INTERSECTION
CUTS
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Separation of ICs associated to S+(ŷ)

Given ŷ ∈ Rn
2 such that ŷj integer ∀j ∈ Jy , the following set

S+(ŷ) = {(x , y) ∈ Rn : dT y ≥ dT ŷ , Ax + Bŷ ≤ b + 1}

is bilevel-feasible free. How to compute ŷ?

• SEP1

ŷ ∈ arg min
y∈Rn2

{dT y : By ≤ b − Ax∗, yj integer ∀j ∈ Jy}.

I ŷ is the optimal solution of the follower when x = x∗.
I Maximize the distance of (x∗, y∗) from the facet dT y ≥ dT ŷ of S(ŷ).

• SEP2 Alternatively, try to find ŷ such that some of the facets in
Ax + bŷ ≤ b can be removed (making thus S(ŷ) larger!)
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Separation of ICs associated to S+(ŷ)
Given ŷ ∈ Rn

2 such that ŷj integer ∀j ∈ Jy , the following set

S+(ŷ) = {(x , y) ∈ Rn : dT y ≥ dT ŷ , Ax + Bŷ ≤ b + 1}

is bilevel-feasible free. How to compute ŷ?
• SEP2

ŷ ∈ arg min
m∑
i=1

wi

dT y ≤ dT y∗ − 1

By + s = b

si + (Lmax
i − L∗i )wi ≥ Lmax

i , ∀i = 1, . . . ,m

yj integer, ∀j ∈ Jy

s free ,w ∈ {0, 1}m

where
L∗i :=

∑
j∈Nx

Aijx
∗
j ≤ Lmax

i :=
∑
j∈Nx

max{Aijx
−
j ,Aijx

+
j }.

I wi = 0 if i-th facet of Ax + Bŷ ≤ b can be removed
I the number of “removable facets” is maximized → larger S+(ŷ).
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Separation of ICs associated to X+(∆ŷ)

Given ∆ŷ ∈ Rn
2 such that dT∆ŷ < 0 and ∆ŷj integer ∀j ∈ Jy , the following set

X+(∆ŷ) = {(x , y) ∈ Rn : Ax + By + B∆ŷ ≤ b + 1}

has no bilevel-feasible points in its interior.
To compute ∆ŷ (Xu [2012]):

∆ŷ ∈ arg min
m̃∑
i=1

ti

dT∆y ≤ −1

B∆y ≤ b − Ax∗ − By∗

∆yj integer, ∀j ∈ Jy

B∆y ≤ t and t ≥ 0.

• variable ti has value 0 in case (B∆y)i ≤ 0 (“removable facet”);

• “maximize the size” of the bilevel-feasible set associated with ∆ŷ .
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Follower Preprocessing

ŷ ∈ arg min{dT y

By ≤ b − Ax∗

l ≤ y ≤ u

yj integer ∀j ∈ Jy}

Theorem
Let yj be a follower variable and let lj be its lower bound in the follower.

If dj > 0 and Bj ≥ 0 then yj = lj in any optimal solution.

• Idea: for any x∗ ∈ Rn1 , fixing variable yj to the lower bound decreases the
follower cost and does not reduce the associated feasible set.

• Fix yj = lj in the HPR as well.
• Large impact in the performance of the algorithm.
• Observation: to preserve equivalent optimal solutions for the follower, we

require dj be strictly positive.
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Follower Preprocessing

ŷ ∈ arg min{dT y

By ≤ b − Ax∗

l ≤ y ≤ u

yj integer ∀j ∈ Jy}

Theorem
Let yj be a follower variable and let uj be its upper bound in the follower.

If dj < 0 and Bj ≤ 0 then yj = uj in any optimal solution.

• Idea: for any x∗ ∈ Rn1 , fixing variable yj to the upper bound decreases the
follower cost and does not reduce the associated feasible set.

• Fix yj = uj in the HPR as well.
• Large impact in the performance of the algorithm.
• Observation: to preserve equivalent optimal solutions for the follower, we

require dj be strictly negative.
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Follower Upper-Bound (FUB) cuts

Observation
Let FUB be an upper bound for the value of the follower’s solution, independently
on the choice of x . Then:

dT y ≤ FUB

is a valid cut for HPR.

Tighter Bounds

Tighter FUB values could be obtained inside the B&B tree, but these cuts are
only locally valid.

Overrestricting the Follower

By replacing original constraints Ax + By ≤ b by more restricting ones
(independent on the choice of x), a FUB can be obtained.
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Follower Upper-Bound cuts

Theorem

Let (x−, x+) denote the bounds for the x variables at the current B&B node.
The following inequality

dT y ≤ FUB(x−, x+)

is locally valid for the current node, where

FUB(x−, x+) := min{dT y∑
j∈Nx

max{Aijx
−
j ,Aijx

+
j }+

∑
j∈Ny

Bijyj ≤ bi , i = 1, . . . ,m

yj integer, ∀j ∈ Jy}.

• FUB(x−, x+) is an overestimator of the follower objective at the current
node (all x ’s are set to their worst value).
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COMPUTATIONAL STUDY

Ivana Ljubić (ESSEC) Exact General-Purpose Solvers for MIBLPs Autumn School on Bilevel Opt., Oct 12-14, 2020 45



Settings

C, CPLEX 12.6.3, Intel Xeon E3-1220V2 3.1 GHz, four threads.

Class Source Type #Inst #OptB #Opt

DENEGRE DeNegre [2011],Ralphs and Adams [2016] I 50 45 50
MIPLIB Fischetti et al. [2016] B 57 20 27
XUWANG Xu and Wang [2014] I,C 140 140 140

INTER-KP DeNegre [2011],Ralphs and Adams [2016] B 160 79 138
INTER-KP2 Tang et al. [2016] B 150 53 150
INTER-ASSIG DeNegre [2011],Ralphs and Adams [2016] B 25 25 25
INTER-RANDOM DeNegre [2011],Ralphs and Adams [2016] B 80 - 80
INTER-CLIQUE Tang et al. [2016] B 80 10 80
INTER-FIRE Baggio et al. [2016] B 72 - 72

total 814 372 762

• #OptB = number of optimal solutions known before our work.

• #Opt = number of optimal solutions known after our work.
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Combining FUB cuts and follower preprocessing

• Final gaps for settings SEP2 and SEP2++ for instance set MIPLIB, obtained
when the time-limit of one hour is reached.
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Effects of different ICs

• MIX++: combination of settings SEP2++ and XU++ (both ICs being separated
at each separation call).

• Performance profile on the subsets of (bilevel and interdiction) instances that
could be solved to optimality by all three settings within the given time-limit
of one hour.
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Comparison with the literature (1)

• Results for the instance set XUWANG (continuous follower, with Hypercube ICs)

MIX++ Xu and Wang [2014]
n1 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 avg avg

10 3 3 3 3 2 3 2 3 2 3 2.6 1.4
60 2 0 0 1 1 1 1 1 2 2 0.9 45.6
110 2 1 2 2 1 2 1 2 2 12 2.8 111.9
160 2 2 3 2 3 1 4 1 1 3 2.1 177.9
210 2 3 1 1 3 3 3 2 5 3 2.6 1224.5
260 3 4 3 6 3 5 6 2 7 11 5.0 1006.7
310 5 10 11 14 7 16 15 8 5 3 9.4 4379.3
360 17 28 11 13 11 15 7 19 9 14 14.4 2972.4
410 19 10 29 8 21 10 9 15 23 42 18.7 4314.2
460 22 10 22 35 21 21 32 22 23 23 23.1 6581.4
B1-110 0 0 0 0 0 1 0 1 0 9 1.3 132.3
B1-160 1 1 3 1 2 1 3 0 0 2 1.3 184.4
B2-110 16 2 2 8 1 25 15 5 1 122 19.7 4379.8
B2-160 8 38 21 91 34 4 40 3 12 123 37.4 22999.7
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Comparison with the literature (2)

• Results for the instance sets INTER-KP2 (left) and INTER-CLIQUE (right)

MIX++ Tang et al. [2016]
n1 k t[s] t[s] #unsol

20 5 5.4 721.4 0
20 10 1.7 2992.6 3
20 15 0.2 129.5 0
22 6 10.3 1281.2 6
22 11 2.3 3601.8 10
22 17 0.2 248.2 0
25 7 33.6 3601.4 10
25 13 8.0 3602.3 10
25 19 0.4 1174.6 0
28 7 97.9 3601.0 10
28 14 22.6 3602.5 10
28 21 0.5 3496.9 8
30 8 303.0 3601.0 10
30 15 31.8 3602.3 10
30 23 0.6 3604.5 10

MIX++ Tang et al. [2016]
ν d t[s] t[s] #unsol

8 0.7 0.1 373.0 0
8 0.9 0.2 3600.0 10
10 0.7 0.3 3600.1 10
10 0.9 0.7 3600.2 10
12 0.7 0.8 3600.3 10
12 0.9 1.9 3600.4 10
15 0.7 2.2 3600.3 10
15 0.9 12.6 3600.2 10
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Literature on computational MIP-based methods for solving MIBLPs

• Moore and Bard [1990]: branch-and-bound, no coupling constraints, and
either the UL discrete or the LL continuous

• DeNegre [2011], DeNegre and Ralphs [2009]: branch-and-cut, no coupling
constraints, cuts exploit the integrality property of UL and LL variables

• Xu and Wang [2014]: multi-way branching on the slacks of the LL

• Kleniati and Adjiman [2015]: branch-and-sandwich algorithm (bilevel
MINLPs) using lower and upper bounds on Φ(x)

• Lozano and Smith [2017]: discrete UL, bigM-approximation of Φ(x) using
extended HPR

• Tahernejad et al. [2020]: branch-and-cut, no-good cuts, ICs, primal heuristics
⇒ MibS, https://coral.ise.lehigh.edu/~ted/software/#MIBS
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This talk was mainly based on

• Watermelon algorithm by Wang and Xu [2017]: multi-way branching

• PhD thesis by Xu [2012]

• Fischetti et al. [2017, 2018]: branch-and-cut with ICs, FUB cuts,
preprocessing of the LL

• Binary code available: https://msinnl.github.io/pages/bilevel.html

• Input format: MPS (HPR) and AUX file (LL variables and OF) needed
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PART III:
INTERDICTION PROBLEMS
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Interdiction Games (IGs)

• special case of bilevel optimization problems

• leader and follower have opposite objective functions
• leader interdicts items of follower

I type of interdiction: linear or discrete, cost increase or destruction
I interdiction budget

• two-person, zero-sum sequential game

• studied mostly for network-based problems in the follower (Israeli and Wood
[2002])

• but also there are interdiction problems where LL is an MILP
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Interdiction Games (IGs): Attacker-Defender models

(a) Drug cartels (b) Most voulnerable nodes

Figure: Applications of Interdiction

• Interdiction Problems: find leader’s strategy that results in the worst
outcome for the follower (min-max)

• Blocker Problems: find the minimum cost strategy for the leader that
guarantees a limited outcome for the follower
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Interdiction: Examples
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Interdiction: Examples
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Interdiction vs Blocker Problems
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Interdiction vs Blocker Problems
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Interdiction Games (IGs)

We focus on:

min
x∈X

max
y∈Rn2

dT y (15)

Q y ≤ q0 (16)

0 ≤ yj ≤ uj(1− xj), ∀j ∈ N (17)

yj integer, ∀j ∈ Jy (18)

• X = {x ∈ Rn1 : Ax ≤ b, xj integer ∀j ∈ Jx , xj binary ∀j ∈ N} (feasible
interdiction policies).

• n1 and n2 are the number of leader (x) and follower (y) variables, resp.

• d , Q, q0, u, A, b are given rational matrices/vectors of appropriate size.

• u: finite upper bounds on the follower variables yj that can be interdicted.

• The concept easily extends to blocker problems as well.
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PROBLEM REFORMULATION
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Problem Reformulation

For a given x ∈ X we define the value function:

Φ(x) = max
y∈Rn2

dT y (19a)

Q y ≤ Q0 (19b)

0 ≤ yj ≤ uj(1− x j), ∀j ∈ N (19c)

yj integer, ∀j ∈ Jy (19d)

so that problem can be restated in the Rn1+1 space as

min
x∈Rn1 ,w∈R

w (20a)

w ≥ Φ(x) (20b)

Ax ≤ b (20c)

xj integer, ∀j ∈ Jx (20d)

xj ∈ {0, 1}, ∀j ∈ N. (20e)

Try to replace the constraints (20b) by linear constraints.
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Benders-Like Reformulation

Find (sufficiently large) Mj ’s and reformulate the follower Wood [2010]

Φ(x) = max{dT y −
∑
j∈N

Mjxjyj : y ∈ Y }, (21)

where

Y = {y ∈ Rn2 : Q y ≤ q0, 0 ≤ yj ≤ uj ∀j ∈ N, yj integer ∀j ∈ Jy}.

Let Ŷ be extreme points of convY . The, Φ(x) is a convex piecewise linear
function:

Φ(x) = max
ŷ∈Ŷ
{dT ŷ −

∑
j∈N

Mjxj ŷj}.
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Convexificaton by Penalization

Benders-Like Reformulation Wood [2010]

min
x∈Rn1 ,w∈R

w (22a)

w ≥ dT ŷ −
∑
j∈N

Mjxj ŷj ∀ŷ ∈ Ŷ (22b)

Ax ≤ b (22c)

xj integer, ∀j ∈ Jx (22d)

xj binary, ∀j ∈ N. (22e)
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INTERDICTION GAMES
WITH

MONOTONICITY PROPERTY
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Interdiction Problems with Monotonicity Property

The follower:

Φ(x) = max
y∈Rn2

dT
N yN + dT

R yR

QN yN + QR yR ≤ q0

0 ≤ yj ≤ uj(1− xj), ∀j ∈ N

yj integer, ∀j ∈ Jy• yN = (yj)j∈N variables that can be interdicted,

• yR = (yj)j∈R the remaining follower variables.

• Associated Q = (QN ,QR) and dT = (dT
N , dT

R ).

Downward Monotonicity: Assume QN ≥ 0

“if ŷ = (ŷN , ŷR) is a feasible follower for a given x and y ′ = (y ′N , ŷR) satisfies integrality
constraints and 0 ≤ y ′N ≤ ŷN , then y ′ is also feasible for x”.

Independence Systems (y are binary and R = ∅)
S := {S ⊆ N : Q χS ≤ q0} ⊆ 2N forms an independence system (i.e., hereditary
property holds).
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Even with Monotonicity the Problems Remain Hard...

Complexity
• Even when the follower is a pure LP, the problem remains NP-hard

(Zenklusen [2010], Dinitz and Gupta [2013]).

• In general, already knapsack interdiction is ΣP
2 -hard (Caprara et al. [2013]).

Examples

Interdicting/Blocking:

• set packing problem

• (multidimensional) knapsack problem

• prize-collecting Steiner tree

• orienteering problem

• maximum clique problem

• all kind of hereditary problems on graphs
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The Choice of Mj ’s is Crucial

Theorem (Fischetti et al. [2019])

For Interdiction Games with Monotonicity Mj = dj , i.e., we have:

min
x∈Rn1 ,w∈R

w

w ≥
∑
j∈R

dj ŷj +
∑
j∈N

dj ŷj(1− xj) ∀ŷ ∈ Ŷ

Ax ≤ b

xj integer, ∀j ∈ Jx

xj binary, ∀j ∈ N.

• Branch-and-cut: separation of interdiction cuts is done by solving the
follower’s subproblem with given x∗ (lazy cut separation).

• Important: separation of maximal solutions (monotonicity property)

• Specialized procedures/algorithms for the follower’s subproblem could be
exploited.
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Interdiction Cuts Could be Lifted/Modified

Assumption 2

All follower variables yN are binary and uj = 1.

Theorem

Take any ŷ ∈ Ŷ . Let a, b ∈ N with ŷa = 1, ŷb = 0, da < db and Qa ≥ Qb. Then
the following lifted interdiction cut is valid:

w ≥
∑
j∈R

dj ŷj +
∑
j∈N

dj ŷj(1− xj) + (db − da)(1− xb).

Theorem

Take any ŷ ∈ Ŷ . Let a, b ∈ N with ŷa = 1, ŷb = 0 and Qa ≥ Qb. Then the
following modified interdiction cut is valid:

w ≥
∑
j∈R

dj ŷj +
∑
j∈N

dj ŷj(1− xj) + db(xa − xb).
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COMPUTATIONAL RESULTS
KNAPSACK INTERDICTION
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The Knapsack Interdiction Problem

Runtime to optimality. Our approach (B&C) vs. the cutting plane (CP) and CCLW

approaches from Caprara et al. [2016].

size instance z∗ CP CCLW B&C

35 1 279 0.34 0.79 0.12
2 469 1.59 2.57 0.21
3 448 55.61 40.39 0.66
4 370 495.50 1.48 0.87
5 467 TL 0.72 0.93
6 268 71.43 0.06 0.11
7 207 144.46 0.06 0.07
8 41 0.50 0.04 0.07
9 80 0.97 0.03 0.07
10 31 0.12 0.03 0.08

40 1 314 0.66 1.06 0.16
2 472 6.67 7.50 0.36
3 637 324.61 162.80 1.02
4 388 1900.03 0.34 0.82
5 461 TL 0.22 0.58
6 399 2111.85 0.09 0.13
7 150 83.59 0.05 0.08
8 71 1.73 0.04 0.09
9 179 137.16 0.08 0.09
10 0 0.03 0.03 0.04

size instance z∗ CP CCLW B&C

45 1 427 1.81 2.37 0.23
2 633 13.03 11.64 0.37
3 548 TL 344.01 1.81
4 611 TL 38.90 3.30
5 629 TL 3.42 2.78
6 398 3300.76 0.07 0.17
7 225 60.43 0.04 0.09
8 157 60.88 0.05 0.10
9 53 0.83 0.05 0.10
10 110 0.40 0.05 0.11

50 1 502 2.86 4.55 0.21
2 788 1529.16 1520.56 2.38
3 631 TL 105.59 2.40
4 612 TL 3.64 1.27
5 764 TL 0.60 4.82
6 303 1046.85 0.05 0.14
7 310 2037.01 0.09 0.11
8 63 2.79 0.05 0.12
9 234 564.97 0.10 0.12
10 15 0.09 0.04 0.13
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The Knapsack Interdiction Problem
Instances from Tang et al. [2016] (TRS). Comparison with MIX++. Average results

over ten instances per row. N∗ #instances unsolved.

TRS MIX++ B&C

|N| k t[s] N∗ t[s] t[s]

20 5 721.4 0 5.4 0.1
20 10 2992.6 3 1.7 0.1
20 15 129.5 0 0.2 0.1
22 6 1281.2 6 10.3 0.1
22 11 3601.8 10 2.3 0.1
22 17 248.2 0 0.2 0.1
25 7 3601.4 10 33.6 0.2
25 13 3602.3 10 8.0 0.2
25 19 1174.6 0 0.4 0.1
28 7 3601.0 10 97.9 0.3
28 14 3602.5 10 22.6 0.3
28 21 3496.9 8 0.5 0.1
30 8 3601.0 10 303.0 0.3
30 15 3602.3 10 31.8 0.3
30 23 3604.5 10 0.6 0.1
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The Clique Interdiction Problem

Example: ω(G ) = 5 and k = 1

v1 v2

v3

v4

v5v6

v7

v8
v9

v1 v2

v3

v4

v5v6

v7

v8
v9

Maximum Clique K̃ = {v3, v4, v7, v8, v9} Optimal interdiction policy {v8}
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The Clique Interdiction Problem

Example: ω(G ) = 5 and k = 2, k = 3

v1 v2

v3

v4

v5v6

v7

v8
v9

v1 v2

v3

v4

v5v6

v7

v8
v9

Optimal interdiction policy {v4, v8} Optimal interdiction policy {v4, v7, v8}
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Branch-and-Cut for Clique Interdiction, Furini et al. [2019]

Benders-Like Reformulation
K: set of all cliques in G .

min w

w +
∑
u∈K

xu ≥ |K | K ∈ K∑
u∈V

xu ≤ k

xu ∈ {0, 1} u ∈ V .

Ingredients:
• State-of-the-art clique solver from

San Segundo et al. [2016].

• Facets, lifting.

• Combinatorial primal and dual
bounds.

• Graph reductions.
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Comparison with MIX++

CLIQUE-INTER MIX++

|V | # # solved time exit gap root gap # solved time exit gap root gap

50 44 44 0.01 - 0.16 28 68.58 6.44 8.50

75 44 44 1.45 - 0.41 14 120.19 9.47 10.91

100 44 37 9.30 1.00 0.98 7 164.42 12.65 13.11

125 44 35 13.43 1.33 1.20 2 135.33 13.88 14.73

150 44 33 27.23 1.91 1.43 1 397.52 16.42 16.39
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Results on Real-world (sparse) networks

k = d0.005 · |V |e k = d0.01 · |V |e

|V | |E | ω [s] [s] |Vp| [s] |Vp|

socfb-UIllinois 30,795 1,264,421 0.5 24.4 10,456 41.6 8290

ia-email-EU 32,430 54,397 0.0 0.6 30,375 0.5 29,212

rgg n 2 15 s0 32,768 160,240 0.0 - - 0.2 30,848

ia-enron-large 33,696 180,811 0.0 2.2 27,791 29.5 26,651

socfb-UF 35,111 1,465,654 0.3 17.8 14,264 87.8 10,708

socfb-Texas84 36,364 1,590,651 0.3 24.6 10,706 74.3 8,704

tech-internet-as 40,164 85,123 0.0 1.4 31,783 - -

fe-body 45,087 163,734 0.1 1.8 2,259 1.8 2259

sc-nasasrb 54,870 1,311,227 0.1 - - 145.5 1,195

soc-themarker u 69,413 1,644,843 2.1 T.L. 35,678 T.L. 31,101

rec-eachmovie u 74,424 1,634,743 0.7 - - 367.3 13669

fe-tooth 78,136 452,591 0.5 18.9 7 19.0 7

sc-pkustk11 87,804 2,565,054 1.1 70.7 2,712 57.1 2,712

soc-BlogCatalog 88,784 2,093,195 11.7 T.L. 51,607 T.L. 46,240

ia-wiki-Talk 92,117 360,767 0.2 49.2 72,678 87.4 72,678

sc-pkustk13 94,893 3,260,967 1.3 724.9 2,360 879.2 2,354
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Conclusions

Branch-and-Cuts for
• General Mixed Integer Bilevel Programs (intersection cuts)

• Interdiction-Like Bilevel Programs (interdiction cuts)

• Interdiction problems easier, and it pays off to exploit the structure

• Use interdiction cuts for blocker-type problems too

Open questions, directions for future research
• Other bilevel-free sets, tighter cuts for the generic case?

• Non-linear mixed integer bilevel problems?

• General purpose solvers for bilevel pricing problems?

• Three-level and multi-level optimization problems, DAD models?

Thanks for Your Attention! Questions?
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M. Köppe, M. Queyranne, and C. T. Ryan. Parametric integer programming
algorithm for bilevel mixed integer programs. Journal of Optimization Theory
and Applications, 146(1):137–150, 2010.

A. Lodi, T. K. Ralphs, and G. J. Woeginger. Bilevel programming and the
separation problem. Math. Program., 146(1-2):437–458, 2014.
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