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Preliminaries



The classical Nash equilibrium problem (NEP)

A Nash equilibrium problem, [1], consists of p players.

Each player i controls the decision variable xi ∈ Ci where Ci is a
subset of Rni .

The “total strategy vector” is x which will be often denoted by

x = (x1, x2, . . . , xi , . . . , xp) = (xi , x−i ).

Each player i has an objective function θi : C =

p∏
i=1

Ci → R that

depends on all player’s strategies, where n = n1 + · · ·+ np.

Given the strategies x−i ∈ C−i of the other players, the aim of player
i is to choose a strategy xi ∈ Ci such that

θi (xi , x−i ) ≤ θi (yi , x−i ) for all yi ∈ Ci . (NEP(i))

A vector x̂ ∈ C is a Nash equilibrium if for any i , x̂i solves (NEP(i))
associated to x̂−i .

We denote by NEP({θi ,Ci}) the set of Nash equilibria.



The Generalized Nash equilibrium problem (GNEP)

In the generalized Nash equilibrium problem

Each player’s strategy must belong to a set identified by the
set-valued map Ki : C ⇒ Ci in the sense that the strategy space of
player i is Ki (x), which depends on all player’s strategies.

Given the strategy x−i ∈ C−i , player i chooses a strategy xi ∈ Ci such
that xi ∈ Ki (xi , x−i ) and

θi (xi , x−i ) ≤ θi (yi , x−i ) for all yi ∈ Ki (xi , x−i ). (GNEP(i))

Thus, a generalized Nash equilibrium [2] is a vector x̂ ∈ C such
that the strategy x̂i is a solution of the problem (GNEP(i)) associated
to x̂−i , for any i .

We denote by GNEP({θi ,Ki ,Ci}) the set of generalized Nash
equilibria.



Arrow-Debreu

Theorem (♠)

For each i , Ci ⊂ Rni is compact, convex and non-empty. If for all i , the
following hold:

1 the objective function θi is quasiconvex in xi ,

2 the objective function θi is continuous,

3 the set-valued map Ki is continuous with convex, closed and
non-empty values;

then there exists at least a generalized Nash equilibrium.

Remark

We notice that:

Let x̂ ∈ C , then x̂ ∈ GNEP({θi ,Ki ,Ci}) if, and only if,
x̂ ∈ NEP({θi ,Ki (x̂)}).
the map K : C ⇒ C defined as K (x) =

∏
Ki (x) is actually a

self-map.
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Projected solutions



Projected solutions

For any i , let Ki : C ⇒ Rni be a set-valued map.

A vector x̂ of C is said to be projected solution [3] of the generalized
Nash equilibrium problem if there exists ŵ ∈ Rn such that:

1. x̂ ∈ PC (ŵ), that is x̂ is a projection of ŵ onto C ;
2. ŵ ∈ NEP({θi ,Ki (x̂)}).

x̂

ŵ

K (x̂)

C

We denote the set of projected solutions by PSGNEP({θi ,Ki ,Ci}).



Projected solutions

Such projected solutions depend on the chosen norm. Indeed, consider for
instance the strategy sets C1 = C2 = [0, 1], functions θ1 and θ2 defined as

θ1(x1, x2) := (x1 − x2)
2 and θ2(x1, x2) := (x2)

2,

and constraint set-valued maps K1 and K2 defined as

K1(x1, x2) := [2− x2, 2] and K2(x1, x2) := [1, 2− x1].

PSGNEP({θi ,Ki ,Ci})

Euclidean norm Maximum norm

{(1, 1)} {(1, s) : s ∈ [0, 1]}
x1

x2

1

1

2

2

x̂0

K (x̂0) = {(2, 1)}



Existence results

Theorem

Assume the ∥ · ∥ is a norm in Rn, and for each player i :

1 Ci is convex, closed and non-empty subset of Rni ,

2 Ki is continuous with compact and non-empty values,

3 Ki is ♠
4 θi is ♣
5 θi (·, x−i ) is ♦, for all x−i ;

then there exists a projected solution.

[3] (2016) [4] (2018) [5] (2021) [6] (2023)

Ci Compactness Compactness
∥ · ∥ Euclidean norm Euclidean norm any norm Euclidean norm

is single-valued or
Ki ♠ convex-valued with is convex-valued convex-valued is convex-valued

int(Ki (x)) ̸= ∅, for all x
θi ♣ continuous differentiable continuity pseudo-continuity continuity

♦ convexity convexity quasi-convexity convexity



Pseudo-continuity

A function h : Rn → R is said to be pseudocontinuous [7] if, for each
x ∈ Rn the following sets

{y ∈ Rn : h(y) ≤ h(x)} and {y ∈ Rn : h(y) ≥ h(x)} are closed.

Example

Consider the function h : R → R defined as

h(x) =


x + 1, x > 0

0, x = 0

x − 1, x < 0

.

It is not difficult to verify that h is pseudocontinuous but it is not
continuous.



The generalized Nash game proposed by Rosen [8]

Let C be a convex and non-empty subset of Rn. For each i and each x ∈ C , we define

Ki (x) := {yi ∈ Rni : (yi , x−i ) ∈ C}.

The following example shows that this kind of game could not be reduced to a classical Nash
game.

Example

Consider C ⊂ R2 as in the following figure:

C

K1(x)

K2(x)

x

Remark
We observe that the map K : C ⇒ Rn defined as K(x) =

∏
Ki (x) is not a self-map in general.
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The generalized Nash game proposed by Rosen

A solution of this Rosen game is a vector x̂ ∈ C such that

x̂ ∈ NEP({θi ,Ki (x̂)}).

Thus x̂ ∈ C is a projected solution, if there exists ŷ such that

x̂ ∈ PC (ŷ) and ŷ ∈ NEP({θi ,Ki (x̂)}).

Proposition ([9])

By considering the Euclidean norm, any projected solution is a classical
solution.
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Reformulation

The problem of finding projected solutions for GNEPs can be associated to
a particular GNEP by adding a new player.

For each i ∈ M = {1, 2, . . . , p, p + 1}, we consider the sets

Ĉi =

{
co(Ci ∪ Ki (C )), if i ≤ p;

C , if i = p + 1

As usual x = (xi , x−i ) ∈ Ĉ =
∏

Ĉi . We also write x0 instead x−(p+1).

For each i ∈ M, K̂i : Ĉ ⇒ Ĉi and θ̂i : Rn × Rn → R are defined as

K̂i (x) =

{
Ki (xp+1), if i ≤ p

C , if i = p + 1
and θ̂i (x) =

{
θi (x

0), if i ≤ p

∥x0 − xp+1∥, if i = p + 1.

Proposition ([9])

1 If x̂ ∈ GNEP({θ̂i , K̂i}), then x̂p+1 ∈ PSGNEP({θi ,Ki}).
2 If x̂ ∈ PSGNEP({θi ,Ki}), then there is ŷ ∈ Rn such that

x̂ = (ŷ , x̂) ∈ GNEP({θ̂i , K̂i}).
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