Why are two-stage/adjustable robust optimization problems so often unhappy?

Why are two-stage/adjustable robust optimization problems so often unhappy?

Because they cannot find a robust solution without constantly changing their minds.

Why are two-stage/adjustable robust optimization problems so often unhappy?

Because they cannot find a robust solution without constantly changing their minds.

What can we do to help?

With smart algorithms we can support two-stage/adjustable robust problems to find a robust optimal solution!

Adjustable Robust Network Design for Energy Networks

Johannes Thürauf, Julia Grübel, Martin Schmidt

Variational Analysis and Applications for Modeling of Energy Exchange (VAME) May 13, 2024 Task

Compute a network design taking into account demand uncertainties

Consider an accurate nonconvex transport model

 \rightarrow Adjustable robust MINLP

Task

Compute a network design taking into account demand uncertainties

Consider an accurate nonconvex transport model

ightarrow Adjustable robust MINLP

Challenges

Discrete decisions and nonlinear constraints

Task

Compute a network design taking into account demand uncertainties

Consider an accurate nonconvex transport model

ightarrow Adjustable robust MINLP

Challenges

Discrete decisions and nonlinear constraints

Key Components of the Solution Approach

Exploit the underlying network and structural properties of potential-based flows

Robust Network Design Model

Characterizing Worst-Case Scenarios

Computational Results

Network modeled as a digraph G = (V, A) with $V := V_+ \cup V_- \cup V_0$ Balanced load flow $\ell \in \mathbb{R}^V$, i.e., $\sum_{u \in V_+} \ell_u = \sum_{u \in V_-} \ell_u$, is feasible if $\exists q, \pi$ with

Network modeled as a digraph G = (V, A) with $V := V_+ \cup V_- \cup V_0$ Balanced load flow $\ell \in \mathbb{R}^V$, i.e., $\sum_{u \in V_+} \ell_u = \sum_{u \in V_-} \ell_u$, is feasible if $\exists q, \pi$ with

$$\sum_{a \in \delta^{\text{out}}(v)} q_a - \sum_{a \in \delta^{\text{in}}(v)} q_a = \begin{cases} \ell_v, & \text{if } v \in V_+ \\ -\ell_v, & \text{if } v \in V_-, \\ 0, & \text{else} \end{cases}$$

 $\begin{aligned} q_a^- &\leq q_a \leq q_a^+, \quad a \in A \\ \pi_u - \pi_v &= \Lambda_a \varphi(q_a), \quad a = (u, v) \in A \\ \pi_u^- &\leq \pi_u \leq \pi_u^+, \quad u \in V \end{aligned}$

Network modeled as a digraph G = (V, A) with $V := V_+ \cup V_- \cup V_0$ Balanced load flow $\ell \in \mathbb{R}^V$, i.e., $\sum_{u \in V_+} \ell_u = \sum_{u \in V_-} \ell_u$, is feasible if $\exists q, \pi$ with

$$\sum_{a \in \delta^{\text{out}}(v)} q_a - \sum_{a \in \delta^{\text{in}}(v)} q_a = \begin{cases} \ell_v, & \text{if } v \in V_+ \\ -\ell_v, & \text{if } v \in V_-, \\ 0, & \text{else} \end{cases}$$
$$q_a^- \le q_a \le q_a^+, \quad a \in A$$
$$\pi_u - \pi_v = \Lambda_a \varphi(q_a), \quad a = (u, v) \in A$$
$$\pi_u^- \le \pi_u \le \pi_u^+, \quad u \in V$$

We consider potential functions of the form $\varphi(q_a) = q_a |q_a|^r$ with $r \ge 0$ \rightarrow allows to model gas, hydrogen, water, and lossless DC power flow networks Robust Network Design Model

Expansion variables $x_a \in \{0, 1\}$ for $a \in A_{ca}$

Network Expansion

Expansion variables $x_a \in \{0, 1\}$ for $a \in A_{ca}$

$$\begin{aligned} q_a^- x_a &\leq q_a \leq q_a^+ x_a, \quad a \in A_{ca} \\ (1 - x_a)M^- &\leq \pi_u - \pi_v - \Lambda_a \varphi(q_a) \leq (1 - x_a)M^+, \quad a \in A_{ca} \end{aligned}$$

Network Expansion

Expansion variables $x_a \in \{0, 1\}$ for $a \in A_{ca}$

$$\begin{aligned} q_a^- x_a &\leq q_a \leq q_a^+ x_a, \quad a \in A_{ca} \\ (1 - x_a)M^- &\leq \pi_u - \pi_v - \Lambda_a \varphi(q_a) \leq (1 - x_a)M^+, \quad a \in A_{ca} \end{aligned}$$

$$\sum_{a \in \delta^{\text{out}}(v)} q_a - \sum_{a \in \delta^{\text{in}}(v)} q_a = \begin{cases} \ell_v, & \text{if } v \in V_+ \\ -\ell_v, & \text{if } v \in V_-, \\ 0, & \text{else} \end{cases}$$

 $q_a^- \le q_a \le q_a^+, \quad a \in A$ $\pi_u - \pi_v = \Lambda_a \varphi(q_a), \quad a = (u, v) \in A$ $\pi_u^- \le \pi_u \le \pi_u^+, \quad u \in V$

Nominal Network Design: Model

Mixed-integer nonconvex optimization problem

$$\begin{array}{ll} \min_{X,q,\pi} & \sum_{a \in A_{ca}} c_a x_a \\ \text{s.t.} & x \in X \subseteq \{0,1\}^{A_{ca}} \\ & \text{massflow conservation}(q;\ell), \quad u \in V \\ & \text{potential-based flows}(q,\pi), \quad a \in A \\ & \text{potential-based flows expansion}(q,\pi), \quad a \in A_{ca} \\ & \text{potential and flow bounds}(q,\pi), \quad u \in V, \ a \in A \end{array}$$

Nominal Network Design: Model

Mixed-integer nonconvex optimization problem

$$\begin{array}{ll} \min_{x,q,\pi} & \sum_{a \in A_{ca}} c_a x_a \\ \text{s.t.} & x \in X \subseteq \{0,1\}^{A_{ca}} \\ & \text{massflow conservation}(q;\ell), \quad u \in V \\ & \text{potential-based flows}(q,\pi), \quad a \in A \\ & \text{potential-based flows expansion}(q,\pi), \quad a \in A_{ca} \\ & \text{potential and flow bounds}(a,\pi), \quad u \in V, \ a \in A \end{array}$$

Demand fluctuations can lead to infeasibility of the computed network design!

Nominal Network Design: Model

Mixed-integer nonconvex optimization problem

$$\begin{array}{ll} \min_{x,q,\pi} & \sum_{a \in A_{ca}} c_a x_a \\ \text{s.t.} & x \in X \subseteq \{0,1\}^{A_{ca}} \\ & \text{massflow conservation}(q;\ell), \quad u \in V \\ & \text{potential-based flows}(q,\pi), \quad a \in A \\ & \text{potential-based flows expansion}(q,\pi), \quad a \in A_{ca} \\ & \text{potential and flow bounds}(a,\pi), \quad u \in V, \quad a \in A \end{array}$$

Demand fluctuations can lead to infeasibility of the computed network design! \rightarrow consider demand uncertainties

Robust optimization approach

ightarrow Protect against all demand fluctuations within the uncertainty set

$$U := \left\{ \ell \in \mathbb{R}_{\geq 0} : \sum_{u \in V_+} \ell_u = \sum_{u \in V_-} \ell_u, \ \ell_u = 0 \ \forall u \in V_0 \right\} \cap Z$$

with Z being a compact set

Robust optimization approach

ightarrow Protect against all demand fluctuations within the uncertainty set

$$U := \left\{ \ell \in \mathbb{R}_{\geq 0} : \sum_{u \in V_+} \ell_u = \sum_{u \in V_-} \ell_u, \ \ell_u = 0 \ \forall u \in V_0 \right\} \cap Z$$

with Z being a compact set

General form of the uncertainty set: polyhedral, ellipsoidal, $\dots \rightarrow$ covers different situations of demand uncertainties

х

Adjustable robust nonconvex optimization problem:

$$\begin{split} \min_{i,q,\pi} & \sum_{a \in A_{ca}} c_a x_a \\ \text{s.t.} & x \in X \subseteq \{0,1\}^{A_{ca}} \\ & \forall \ell \in U \exists q, \pi \text{ that satisfy} \\ & \text{massflow conservation}(q_\ell; \ell), \quad u \in V \\ & \text{potential-based flows}(q_\ell, \pi_\ell), \quad a \in A_{ca} \\ & \text{potential-based flows expansion}(q_\ell, \pi_\ell), \quad a \in A_{ca} \\ & \text{potential-based flow bounds}(q_\ell, \pi_\ell), \quad u \in V, a \in A \end{split}$$

Adjustable robust nonconvex optimization problem:

$$\begin{array}{ll} \min_{x,q,\pi} & \sum_{a \in A_{ca}} c_a x_a \\ \text{s.t.} & x \in X \subseteq \{0,1\}^{A_{ca}} \\ & \forall \ell \in U \exists q, \pi \text{ that satisfy} \\ & \text{massflow conservation}(q_\ell; \ell), \quad u \in V \\ & \text{potential-based flows}(q_\ell, \pi_\ell), \quad a \in A_{ca} \\ & \text{potential-based flows expansion}(q_\ell, \pi_\ell), \quad a \in A_{ca} \\ & \text{potential-based flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential and flow bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V, a \in A \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\ & \text{potential bounds}(a_\ell, \pi_\ell), \quad u \in V \\$$

How can we solve this challenging problem?

Adversarial Solution Approach

General Algorithmic Idea

Determine a set of finitely many scenarios $S \subseteq U$

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

Fix the network design x and search for a violating demand scenario in U

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

Fix the network design x and search for a violating demand scenario in U

If no violating demand scenario exists \rightarrow network design x is optimal else add violating demand scenario $S = S \cup \{u\}$ and compute new network design w.r.t. S

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

Fix the network design x and search for a violating demand scenario in U

If no violating demand scenario exists \rightarrow network design x is optimal else add violating demand scenario $S = S \cup \{u\}$ and compute new network design w.r.t. S

Well known approach in strictly robust optimization; see e.g., Yanıkoğlu et al. 2019

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

Fix the network design x and search for a violating demand scenario in U

If no violating demand scenario exists \rightarrow network design x is optimal else add violating demand scenario $S = S \cup \{u\}$ and compute new network design w.r.t. S

Well known approach in strictly robust optimization; see e.g., Yanıkoğlu et al. 2019

How can we find violating scenarios for the adjustable robust nonconvex problem? Can we guarantee finite termination?

Characterizing Worst-Case Scenarios

Three types of "worst-case" scenarios

- Unbalanced demands between different connected components
- Violating flow bounds
- Violating potential bounds

Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))Connected component $G^i = (V^i, A^i)$ Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))Connected component $G^i = (V^i, A^i)$

Find unbalanced demands

$$\mu_{\mathsf{G}^{i}}(\mathsf{X}) := \max_{\ell} |\mathsf{Y}| \quad \text{s.t.} \quad \mathsf{Y} = \sum_{u \in \mathsf{V}^{i} \cap \mathsf{V}_{+}} \ell_{u} - \sum_{u \in \mathsf{V}^{i} \cap \mathsf{V}_{-}} \ell_{u}, \ \ell \in U$$

Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))Connected component $G^i = (V^i, A^i)$

Find unbalanced demands

$$\mu_{G^{i}}(x) := \max_{\ell} |y| \quad \text{s.t.} \quad y = \sum_{u \in V^{i} \cap V_{+}} \ell_{u} - \sum_{u \in V^{i} \cap V_{-}} \ell_{u}, \ \ell \in U$$

 $\mu_{G^i}(x) > 0 \rightarrow x$ is robust infeasible

 \rightarrow At most |V| many worst-case scenarios

Worst-Case Scenarios: Flow Bounds

Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))

Worst-Case Scenarios: Flow Bounds

Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))Minimum arc flow in U

$$\underline{q}_{a}(x) := \min_{\ell,q,\pi} \quad q_{a} \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V$$

potential-based flows, $a = (u, v) \in A$
 $\ell \in U$, no bounds

Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))Minimum arc flow in U

$$\underline{q}_{a}(x) := \min_{\ell,q,\pi} \quad q_{a} \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V$$

potential-based flows, $a = (u, v) \in A$
 $\ell \in U$, no bounds

Maximum arc flow in U

 $\overline{q}_{a}(x) := \max_{\ell,q,\pi} \quad q_{a} \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V \\ \text{potential-based flows}, \quad a = (u,v) \in A \\ \ell \in U, \quad \text{no bounds}$

Fixed network expansion $x \in X$ and the expanded graph G(x) = (V, A(x))Minimum arc flow in U

$$\underline{q}_{a}(x) := \min_{\ell,q,\pi} \quad q_{a} \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V$$

potential-based flows, $a = (u, v) \in A$
 $\ell \in U$, no bounds

Maximum arc flow in U

 $\overline{q}_a(x) := \max_{\ell,q,\pi} \quad q_a \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V \\ \text{potential-based flows}, \quad a = (u,v) \in A \\ \ell \in U, \quad \text{no bounds}$

 \rightarrow At most 2|A(x)| many worst-case flow scenarios for fixed x

Maximum potential difference between pair (u, v) of nodes

$$\varphi_{u,v}(x) := \max_{\ell,q,\pi} \quad \pi_u - \pi_v \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V$$

potential-based flows, $a = (u, v) \in A$
 $\ell \in U$, no bounds

Maximum potential difference between pair (u, v) of nodes

$$\varphi_{u,v}(x) := \max_{\ell,q,\pi} \quad \pi_u - \pi_v \quad \text{s.t.} \quad \text{massflow conservation}, \quad u \in V$$

potential-based flows, $a = (u, v) \in A$
 $\ell \in U, \quad \text{no bounds}$

 \rightarrow At most $|V|^2$ many worst-case scenarios for the potential bounds

Main Result: Characterization of Robust Feasibility

Theorem

Let $x \in X$ be fixed and $G'(x) = (V, A_{ex} \cup \{a \in A_{ca} : x_a = 1\})$ be the expanded graph. Let $\mathcal{G}'(x) := \{G^1, \ldots, G^n\}$ with $G^i = (V^i, A^i)$ be the set of connected components of G'(x). Then, expansion x is adjustable robust feasible if and only if

$$\mu_{G^{i}}(x) = 0 \quad \text{for all} \quad G' \in \mathcal{G}'(x)$$

$$\varphi_{u,v}(x) \leq \pi_{u}^{+} - \pi_{v}^{-} \quad \text{for all} \quad (u,v) \in (V^{i})^{2}, \ G^{i} \in \mathcal{G}'(x)$$

$$\underline{q}_{a}(x) \geq q_{a}^{-} \quad \text{for all} \quad a \in A^{i}, \ G^{i} \in \mathcal{G}'(x)$$

$$\overline{q}_{a}(x) \leq q_{a}^{+} \quad \text{for all} \quad a \in A^{i}, \ G^{i} \in \mathcal{G}'(x)$$

Main Result: Characterization of Robust Feasibility

Theorem

Let $x \in X$ be fixed and $G'(x) = (V, A_{ex} \cup \{a \in A_{ca} : x_a = 1\})$ be the expanded graph. Let $\mathcal{G}'(x) := \{G^1, \dots, G^n\}$ with $G^i = (V^i, A^i)$ be the set of connected components of G'(x). Then, expansion x is adjustable robust feasible if and only if

$$\begin{split} \mu_{G^{i}}(x) &= 0 \quad \text{for all} \quad G' \in \mathcal{G}'(x) \\ \varphi_{u,v}(x) &\leq \pi_{u}^{+} - \pi_{v}^{-} \quad \text{for all} \quad (u,v) \in (V^{i})^{2}, \ G^{i} \in \mathcal{G}'(x) \\ \underline{q}_{a}(x) &\geq q_{a}^{-} \quad \text{for all} \quad a \in A^{i}, \ G^{i} \in \mathcal{G}'(x) \\ \bar{q}_{a}(x) &\leq q_{a}^{+} \quad \text{for all} \quad a \in A^{i}, \ G^{i} \in \mathcal{G}'(x) \end{split}$$

 \rightarrow At most $|V| + |V|^2 + 2|A|$ many "worst-case" scenarios

Result holds for general compact uncertainty sets U

Determine a set of finitely many scenarios $S \subseteq U$

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

Compute the finitely many "worst-case" scenarios w.r.t. fixed x

If no violating demand scenario exists \rightarrow network design x is optimal else add violating demand scenario $S = S \cup \{u\}$ and compute new network design w.r.t. S

Variant: Add at most one violating scenario per iteration

Determine a set of finitely many scenarios $S \subseteq U$

Solve robust network design problem w.r.t. S instead of $U \leftarrow (x, q, \pi)$

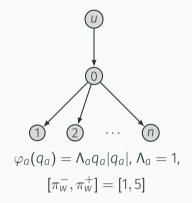
Compute the finitely many "worst-case" scenarios w.r.t. fixed x

If no violating demand scenario exists \rightarrow network design x is optimal else add violating demand scenario $S = S \cup \{u\}$ and compute new network design w.r.t. S

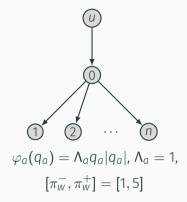
Variant: Add at most one violating scenario per iteration

Theorem

Algorithm terminates after a finite number of iterations with a global optimal solution or proves infeasibility.



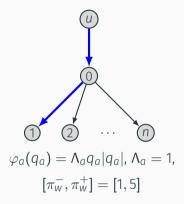
Source u, sinks $1, \ldots, n$, inner node 0



Source *u*, sinks 1, . . . , *n*, inner node 0

Parallel expansion candidates

Box uncertainty set $U = \{\ell_w \in [0, 2], w \in V, \ \ell_0 = 0\}$ $\cap \{\ell_u = \sum_{v \in V_-} \ell_v\}$



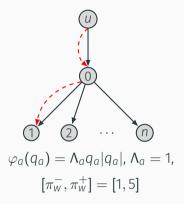
Source *u*, sinks 1, . . . , *n*, inner node 0

Parallel expansion candidates

Box uncertainty set $U = \{\ell_w \in [0, 2], w \in V, \ \ell_0 = 0\}$ $\cap \{\ell_u = \sum_{v \in V_-} \ell_v\}$

1. Iteration

• Worst-Case demand: $d_u = d_1 = 2$ remaining nodes demand 0



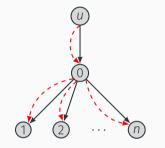
Source *u*, sinks 1, . . . , *n*, inner node 0

Parallel expansion candidates

Box uncertainty set $U = \{\ell_w \in [0, 2], w \in V, \ \ell_0 = 0\}$ $\cap \{\ell_u = \sum_{v \in V_-} \ell_v\}$

1. Iteration

- Worst-Case demand: $d_u = d_1 = 2$ remaining nodes demand 0
- Expansion decision $x_{u,1} = x_{0,1} = 1$

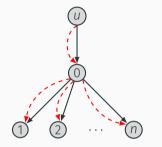


After *n*-iterations

 $|V_+| \times |V_-|$ worst-case scenarios

$$S = \{ \ell_u = \ell_v = 2, \ \ell_w = 0, w \in V_- \setminus \{v\}$$

for all $v \in V_- \}$



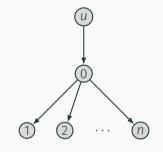
After *n*-iterations

 $|V_+| \times |V_-|$ worst-case scenarios

$$S = \{\ell_u = \ell_v = 2, \ \ell_w = 0, w \in V_- \setminus \{v\}$$
for all $v \in V_-\}$

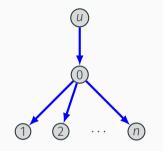
Why do we need "so many" worst-case scenarios?

 \rightarrow Limited supply capacity of the source



Same network with larger supply capacity

$$\tilde{U} = \{\ell_{v} \in [0, 2], v \in V_{-}, \ \ell_{0} = 0, \ \ell_{u} \le 2|V_{-}|\}$$
$$\cap \{\ell_{u} = \sum_{v \in V_{-}} \ell_{v}\}$$

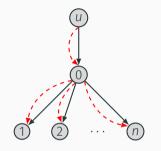


Same network with larger supply capacity

$$\begin{split} \tilde{U} &= \{\ell_v \in [0,2], v \in V_-, \ \ell_0 = 0, \ \ell_u \le 2|V_-|\} \\ &\cap \{\ell_u = \sum_{v \in V_-} \ell_v\} \end{split}$$

1. Iteration:

• Worst-case scenario $d_u = 2|V_-|, d_i = 2, i \in \{1, \dots, n\}$

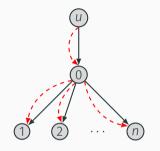


Same network with larger supply capacity

$$\begin{split} \tilde{U} &= \{\ell_v \in [0,2], v \in V_-, \ \ell_0 = 0, \ \ell_u \le 2|V_-|\} \\ &\cap \{\ell_u = \sum_{v \in V_-} \ell_v\} \end{split}$$

1. Iteration:

- Worst-case scenario $d_u = 2|V_-|, d_i = 2, i \in \{1, \dots, n\}$
- Algorithm terminates after a single iteration



Same network with larger supply capacity

$$\begin{split} \tilde{U} &= \{\ell_v \in [0,2], v \in V_-, \ \ell_0 = 0, \ \ell_u \le 2|V_-|\} \\ &\cap \{\ell_u = \sum_{v \in V_-} \ell_v\} \end{split}$$

1. Iteration:

- Worst-case scenario $d_u = 2|V_-|, d_i = 2, i \in \{1, \dots, n\}$
- Algorithm terminates after a single iteration

In real-world utility networks sources can supply many sinks \rightarrow very few worst-case scenarios in practice

Computational Results

Computational Setup

Implemented in Python 3.7 and Pyomo 6.7.0

Solving MINLPs with Gurobi 10.0.3

Time limit of 24 hours per instance

Gas networks $\varphi_a = \Lambda_a q_a |q_a|$

Expansion candidates are in parallel with up to four different diameters

instance	#nodes	#sources	#sinks	#pipes	#short pipes
GasLib-40	40	3	29	39	6
GasLib-60	60	3	39	61	18

Consider four different polyhedral uncertainty sets \rightarrow with and without correlations between sinks

Add to the plain algorithm

- Acyclic inequalities (Habeck and Pfetsch 2022)
- $\cdot\,$ Mixed-integer convex relaxation \rightarrow lower bounds for the MINLPs

 \rightarrow only used for computing lower bounds

General approach is exact

Robustifying Existing Networks

Robustifying Existing Networks

Plain Approach (Left: GasLib-40, Right: GasLib-60)

#Solved	4 of 4		
	Min	Median	Max
#Scenarios Runtime (s)	1 807.65	2 1395.33	2 1578.68

#Solved	4 of 4		
	Min	Median	Max
#Scenarios	1	1	1
Runtime (s)	1117.37	1175.83	3009.57

Approach with lower bound strengthening

#Solved	4 of 4			#Solved	4 of 4		
	Min	Median	Max		Min	Median	Max
#Scenarios Runtime (s)	1 332.21	2 1149.98	2 2042.90	#Scenarios Runtime (s)	1 564.06	1 995.62	1 1037.74

Greenfield Approach

Plain Approach (Left: GasLib-40, Right: GasLib-60)

#Solved	1 of 4		
	Min	Median	Max
#Scenarios	1	1	1
Runtime (s)	7320.85	7320.85	7320.85

#Solved	1 of 4		
	Min	Median	Max
#Scenarios	2	2	2
Runtime (s)	81 895.84	81 895.84	81 895.84

Approach with lower bound strengthening

#Solved	3 of 4			#Solved	1 of 4		
	Min	Median	Max		Min	Median	Max
#Scenarios Runtime (s)	1 4066.79	3 39 963.87	3 50 183.53	#Scenarios Runtime (s)	2 51290.35	2 51 290.35	2 51 290.35

An algorithm to compute adjustable robust network designs for nonlinear flows

- Finitely many "worst-case scenarios"
- Finite termination for arbitrary compact uncertainty sets
- Approach performs well in practice

An algorithm to compute adjustable robust network designs for nonlinear flows

- Finitely many "worst-case scenarios"
- Finite termination for arbitrary compact uncertainty sets
- Approach performs well in practice

Future research

- Extension to active elements
- \cdot Valid inequalities for network design problems with potential-based flows

Main source

J. Thürauf, J. Grübel, and M. Schmidt (2024). Adjustable Robust Nonlinear Network Design under Demand Uncertainties. Tech. rep. URL: https://optimization-online.org/?p=26035

Scan me!