
Why are two-stage/adjustable robust optimization problems so often unhappy?

Because they cannot find a robust solution without constantly changing
their minds.

What can we do to help?

With smart algorithms we can support two-stage/adjustable robust problems to
find a robust optimal solution!

This joke was created with the help of ChatGPT
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Adjustable Robust Nonlinear Network Design

Task

Compute a network design taking into account demand uncertainties

Consider an accurate nonconvex transport model

→ Adjustable robust MINLP

Challenges

Discrete decisions and nonlinear constraints

Key Components of the Solution Approach

Exploit the underlying network and structural properties of potential-based flows
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Potential-Based Flows



Potential-Based Flows

Network modeled as a digraph G = (V,A) with V := V+ ∪ V− ∪ V0

Balanced load flow ` ∈ RV , i.e.,
∑

u∈V+ `u =
∑

u∈V− `u, is feasible if ∃ q, π with

∑
a∈δout(v)

qa −
∑

a∈δin(v)

qa =


`v, if v ∈ V+
−`v, if v ∈ V−,

0, else

v ∈ V

q−a ≤ qa ≤ q+a , a ∈ A
πu − πv = Λaϕ(qa), a = (u, v) ∈ A
π−
u ≤ πu ≤ π+

u , u ∈ V

We consider potential functions of the form ϕ(qa) = qa|qa|r with r ≥ 0

→ allows to model gas, hydrogen, water, and lossless DC power flow networks
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Robust Network Design Model



Network Expansion

Expansion variables xa ∈ {0, 1} for a ∈ Aca

q−a xa ≤ qa ≤ q+a xa, a ∈ Aca

(1− xa)M− ≤ πu − πv − Λaϕ(qa) ≤ (1− xa)M+, a ∈ Aca

∑
a∈δout(v)

qa −
∑

a∈δin(v)

qa =


`v, if v ∈ V+
−`v, if v ∈ V−,

0, else

v ∈ V

q−a ≤ qa ≤ q+a , a ∈ A
πu − πv = Λaϕ(qa), a = (u, v) ∈ A
π−
u ≤ πu ≤ π+

u , u ∈ V
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Nominal Network Design: Model

Mixed-integer nonconvex optimization problem

min
x,q,π

∑
a∈Aca

caxa

s.t. x ∈ X ⊆ {0, 1}Aca

massflow conservation(q; `), u ∈ V
potential-based flows(q, π), a ∈ A
potential-based flows expansion(q, π), a ∈ Aca
potential and flow bounds(q, π), u ∈ V, a ∈ A

Demand fluctuations can lead to infeasibility of the computed network design!
→ consider demand uncertainties
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Modeling Demand Uncertainty

Robust optimization approach
→ Protect against all demand fluctuations within the uncertainty set

U :=

` ∈ R≥0 :
∑
u∈V+

`u =
∑
u∈V−

`u, `u = 0 ∀u ∈ V0

 ∩ Z
with Z being a compact set

General form of the uncertainty set: polyhedral, ellipsoidal, . . .
→ covers different situations of demand uncertainties
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Robust Network Design

Adjustable robust nonconvex optimization problem:

min
x,q,π

∑
a∈Aca

caxa

s.t. x ∈ X ⊆ {0, 1}Aca

∀` ∈ U ∃ q, π that satisfy
massflow conservation(q`; `), u ∈ V
potential-based flows(q`, π`), a ∈ Aca
potential-based flows expansion(q`, π`), a ∈ Aca
potential and flow bounds(q`, π`), u ∈ V, a ∈ A

How can we solve this challenging problem?
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Adversarial Solution Approach



General Algorithmic Idea

Determine a set of finitely many scenarios S ⊆ U

Solve robust network design problem w.r.t. S instead of U← (x,q, π)

Fix the network design x and search for a violating demand scenario in U

If no violating demand scenario exists→ network design x is optimal
else add violating demand scenario S = S ∪ {u}

and compute new network design w.r.t. S

Well known approach in strictly robust optimization; see e.g., Yanıkoğlu et al. 2019

How can we find violating scenarios for the adjustable robust nonconvex problem?

Can we guarantee finite termination?
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Characterizing Worst-Case Scenarios



Finding Worst-Case Scenarios

Three types of “worst-case” scenarios

• Unbalanced demands between different connected components

• Violating flow bounds

• Violating potential bounds

10



Worst-Case Scenarios: Unbalanced Demands

Fixed network expansion x ∈ X and the expanded graph G(x) = (V,A(x))

Connected component Gi = (V i,Ai)

Find unbalanced demands

µGi(x) := max
`
|y| s.t. y =

∑
u∈V i∩V+

`u −
∑

u∈V i∩V−

`u, ` ∈ U

µGi(x) > 0→ x is robust infeasible

→ At most |V| many worst-case scenarios
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Worst-Case Scenarios: Flow Bounds

Fixed network expansion x ∈ X and the expanded graph G(x) = (V,A(x))

Minimum arc flow in U

qa(x) := min
`,q,π

qa s.t. massflow conservation, u ∈ V
potential-based flows, a = (u, v) ∈ A
` ∈ U, no bounds

Maximum arc flow in U

qa(x) := max
`,q,π

qa s.t. massflow conservation, u ∈ V
potential-based flows, a = (u, v) ∈ A
` ∈ U, no bounds

→ At most 2|A(x)| many worst-case flow scenarios for fixed x
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Worst-Case Scenarios: Potential Bounds

Maximum potential difference between pair (u, v) of nodes

ϕu,v(x) := max
`,q,π

πu − πv s.t. massflow conservation, u ∈ V
potential-based flows, a = (u, v) ∈ A
` ∈ U, no bounds

→ At most |V|2 many worst-case scenarios for the potential bounds
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Main Result: Characterization of Robust Feasibility

Theorem

Let x ∈ X be fixed and G′(x) = (V,Aex ∪ {a ∈ Aca : xa = 1}) be the expanded graph.
Let G′(x) := {G1, . . . ,Gn} with Gi = (V i,Ai) be the set of connected components
of G′(x). Then, expansion x is adjustable robust feasible if and only if

µGi(x) = 0 for all Gi ∈ G′(x)
ϕu,v(x) ≤ π+

u − π−
v for all (u, v) ∈ (V i)2, Gi ∈ G′(x)

qa(x) ≥ q
−
a for all a ∈ Ai, Gi ∈ G′(x)

q̄a(x) ≤ q+a for all a ∈ Ai, Gi ∈ G′(x)

→ At most |V|+ |V|2 + 2|A| many “worst-case” scenarios

Result holds for general compact uncertainty sets U
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General Algorithmic Idea

Determine a set of finitely many scenarios S ⊆ U

Solve robust network design problem w.r.t. S instead of U← (x,q, π)

Compute the finitely many “worst-case” scenarios w.r.t. fixed x

If no violating demand scenario exists→ network design x is optimal
else add violating demand scenario S = S ∪ {u}

and compute new network design w.r.t. S

Variant: Add at most one violating scenario per iteration

Theorem

Algorithm terminates after a finite number of iterations with a global optimal
solution or proves infeasibility.
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How Many Scenarios Do We Need?



How Many Scenarios Do We Need?

u

0

1 2 . . . n

ϕa(qa) = Λaqa|qa|, Λa = 1,

[π−
w , π

+
w ] = [1, 5]

Source u, sinks 1, . . . ,n, inner node 0

Parallel expansion candidates

Box uncertainty set
U = {`w ∈ [0, 2],w ∈ V, `0 = 0}
∩{`u =

∑
v∈V− `v}

1. Iteration

• Worst-Case demand: du = d1 = 2 remaining nodes demand 0

• Expansion decision xu,1 = x0,1 = 1
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How Many Scenarios Do We Need?

u

0

1 2 . . . n

After n-iterations

|V+| × |V−| worst-case scenarios

S = {`u = `v = 2, `w = 0,w ∈ V− \ {v}
for all v ∈ V−}

Why do we need “so many” worst-case scenarios?

→ Limited supply capacity of the source
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How Many Scenarios Do We Need?

u

0

1 2 . . . n

Same network with larger supply capacity

Ũ = {`v ∈ [0, 2], v ∈ V−, `0 = 0, `u ≤ 2|V−|}
∩ {`u =

∑
v∈V− `v}

1. Iteration:

• Worst-case scenario du = 2|V−|, di = 2, i ∈ {1, . . . ,n}

• Algorithm terminates after a single iteration

In real-world utility networks sources can supply many sinks
→ very few worst-case scenarios in practice

18
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Computational Results



Computational Setup

Implemented in Python 3.7 and Pyomo 6.7.0

Solving MINLPs with Gurobi 10.0.3

Time limit of 24 hours per instance

Gas networks ϕa = Λaqa|qa|

Expansion candidates are in parallel with up to four different diameters

instance #nodes #sources #sinks #pipes #short pipes

GasLib-40 40 3 29 39 6
GasLib-60 60 3 39 61 18
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Computational Results

Consider four different polyhedral uncertainty sets
→ with and without correlations between sinks

Add to the plain algorithm

• Acyclic inequalities (Habeck and Pfetsch 2022)
• Mixed-integer convex relaxation→ lower bounds for the MINLPs

→ only used for computing lower bounds

General approach is exact

20



Robustifying Existing Networks

Plain Approach (Left: GasLib-40, Right: GasLib-60)

#Solved 4 of 4

Min Median Max

#Scenarios 1 2 2
Runtime (s) 807.65 1395.33 1578.68

#Solved 4 of 4

Min Median Max

#Scenarios 1 1 1
Runtime (s) 1117.37 1175.83 3009.57

Approach with lower bound strengthening

#Solved 4 of 4

Min Median Max

#Scenarios 1 2 2
Runtime (s) 332.21 1149.98 2042.90

#Solved 4 of 4

Min Median Max

#Scenarios 1 1 1
Runtime (s) 564.06 995.62 1037.74
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Greenfield Approach

Plain Approach (Left: GasLib-40, Right: GasLib-60)

#Solved 1 of 4

Min Median Max

#Scenarios 1 1 1
Runtime (s) 7320.85 7320.85 7320.85

#Solved 1 of 4

Min Median Max

#Scenarios 2 2 2
Runtime (s) 81 895.84 81 895.84 81 895.84

Approach with lower bound strengthening

#Solved 3 of 4

Min Median Max

#Scenarios 1 3 3
Runtime (s) 4066.79 39 963.87 50 183.53

#Solved 1 of 4

Min Median Max

#Scenarios 2 2 2
Runtime (s) 51 290.35 51 290.35 51 290.35
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Summary and Outlook

An algorithm to compute adjustable robust network designs for nonlinear flows

• Finitely many “worst-case scenarios”

• Finite termination for arbitrary compact uncertainty sets

• Approach performs well in practice

Future research

• Extension to active elements

• Valid inequalities for network design problems with potential-based flows
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Main Source

Main source

J. Thürauf, J. Grübel, and M. Schmidt (2024). Adjustable Robust Nonlinear Network
Design under Demand Uncertainties. Tech. rep. url:
https://optimization-online.org/?p=26035

Scan me!
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