A Branch-and-Bound Algorithm for Nonconvex Nash Equilibrium Problems

Oliver Stein

Institute for Operations Research (IOR) Karlsruhe Institute of Technology (KIT)

VAME, Trier, May 13, 2024

This is joint work with

Peter Kirst, Wageningen University & Research (WUR), Stefan Schwarze, Karlsruhe Institute of Technology (KIT).

Paper is accepted for publication in SIOPT.

Survey

1 Introduction

3 Branch-and-bound algorithm for NEPs

4 Illustrative examples

A Nash equilibrium problem (based on Beck/St. 2024)

For convex quadratic functions $q_1, q_2 : \mathbb{R}^1 \to \mathbb{R}^1$ consider the two parametric problems

$$\begin{array}{rcl} P_1(x_2): & \min_{x_1} x_1 & \text{s.t.} & q_1(x_2) \leq x_1, \\ \\ P_2(x_1): & \min_{x_2} x_2 & \text{s.t.} & q_2(x_1) \leq x_2. \end{array}$$

ranch-and-bound algorithm for NEPs

Illustrative example

Final remarks

$$P_1(x_2)$$
: min x_1 s.t. $q_1(x_2) \le x_1$

ranch-and-bound algorithm for NEPs

Illustrative example

Final remarks

$$P_1(x_2)$$
: min x_1 s.t. $q_1(x_2) \le x_1$

ranch-and-bound algorithm for NEP

Illustrative example

Final remarks

$$P_1(x_2)$$
: min x_1 s.t. $q_1(x_2) \le x_1$

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

A Nash equilibrium problem

$$P_2(x_1): \min_{x_2} x_2 \text{ s.t. } q_2(x_1) \le x_2$$

<ロト < 回 ト < 巨 ト < 巨 ト 三 の < () 8 / 50

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

A Nash equilibrium problem

 $P_2(x_1): \min_{x_2} x_2 \quad \text{s.t.} \quad q_2(x_1) \le x_2$

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

$$P_2(x_1)$$
: min x_2 s.t. $q_2(x_1) \le x_2$

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

$$x^{1,\star} \in S_1(x^{2,\star}), \quad x^{2,\star} \in S_2(x^{1,\star})$$

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

A Nash equilibrium problem

$$x^{1,\star} \in S_1(x^{2,\star}), \quad x^{2,\star} \in S_2(x^{1,\star})$$

General problem definition

We consider Nash equilibrium problems of the following form:

- Finite number of players $\nu = 1, \ldots, N$.
- Strategy sets are boxes $\Omega_{\nu} \subset \mathbb{R}^{n_{\nu}}$.
- Each player ν 's objective function

$$\theta_{\nu}: \Omega_1 \times \ldots \times \Omega_N \to \mathbb{R}$$

is continuous.

Each player ν only controls her variables $x^{\nu} \in \Omega_{\nu}$, but her objective function also depends on all other players' decisions (as parameters).

• Put
$$n = \sum_{\nu=1}^{N} n_{\nu}$$
 and $\Omega := \Omega_1 \times \ldots \times \Omega_N \subseteq \mathbb{R}^n$.

Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

General problem definition

A Nash equilibrium is a point $\bar{x} = (\bar{x}^1, \dots, \bar{x}^N) \in \Omega$ such that for each $\nu = 1, \dots, N$ the point \bar{x}^{ν} is a global minimal point of the parametric optimization problem

$$P_
u(ar{x}^{-
u}): \quad \min_{x^
u} \; heta_
u(x^
u, ar{x}^{-
u}) \quad ext{ s.t. } \quad x^
u \in \Omega_
u.$$

Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

General problem definition

A Nash equilibrium is a point $\bar{x} = (\bar{x}^1, \dots, \bar{x}^N) \in \Omega$ such that for each $\nu = 1, \dots, N$ the point \bar{x}^{ν} is a global minimal point of the parametric optimization problem

$$P_
u(ar{x}^{-
u}): \quad \min_{x^
u} \ heta_
u(x^
u, ar{x}^{-
u}) \quad ext{ s. t. } \quad x^
u \in \Omega_
u.$$

The collection of the problems $P_{\nu}(x^{-\nu})$, $\nu = 1, ..., N$, with $x \in \Omega$ is called Nash equilibrium problem (NEP).

Literature review

Many algorithms for the determination of Nash equilibria require convexity and smoothness assumptions on the functions θ_{ν} . Prominent solution approaches comprise

- the Karush-Kuhn-Tucker approach and
- the variational inequality approach.

In contrast, the

Nikaido-Isoda approach

neither needs convexity nor differentiability. However, even smooth convex θ_{ν} 's lead to a nonsmooth nonconvex minimization problem.

F. Facchinei, C. Kanzow, *Generalized Nash equilibrium problems*, 4OR, 5 (2007), 173–210.

Literature review

So far spatial branch-and-bound methods for nonconvex continuous NEPs have not been suggested. For discrete NEPs

(aka integer programming games,

M. Carvalho, G. Dragotto, A. Lodi, S. Sankaranarayanan, *Integer Programming Games: A Gentle Computational Overview*, INFORMS TutORials in Operations Research, to appear)

branch-and-prune (but not -bound) has been studied in

S. Sagratella, *Computing all solutions of Nash equilibrium problems with discrete strategy sets*, SIOPT 26 (2016), 2190–2218

S. Schwarze, O. Stein, A branch-and-prune algorithm for discrete Nash equilibrium problems, COAP 86 (2023), 491–519.

Our nonconvex problem class

In our approach,

- strategy sets are boxes $\Omega_{\nu} \subseteq \mathbb{R}^{n_{\nu}}$ and, thus, convex,
- the players' objective functions θ_ν : Ω → ℝ are continuous, but not assumed to be convex (neither in x nor in x^ν),
- the whole set E of Nash equilibria is approximated, not just a single equilibrium.

Bounding procedures

We require the availability of some convergent lower bounding procedure, i.e. for a lower semi-continuous function f and a box $X \subseteq \Omega$ we can compute a lower bound

$$\ell_f(X) \leq \min_{x \in X} f(x)$$

such that

$$\lim_{k\to\infty}\ell_f(X^k) = \lim_{k\to\infty}\min_{x\in X^k}f(x)$$

holds for any exhaustive sequence of boxes $(X^k)_{k \in \mathbb{N}}$.

Bounding procedures

We require the availability of some convergent lower bounding procedure, i.e. for a lower semi-continuous function f and a box $X \subseteq \Omega$ we can compute a lower bound

$$\ell_f(X) \leq \min_{x \in X} f(x)$$

such that

$$\lim_{k\to\infty}\ell_f(X^k) = \lim_{k\to\infty}\min_{x\in X^k}f(x)$$

holds for any exhaustive sequence of boxes $(X^k)_{k \in \mathbb{N}}$.

Convergent upper bounding procedures are defined analogously.

ranch-and-bound algorithm for NEP:

Illustrative example

Final remarks

ranch-and-bound algorithm for NEP: 0000000000000000 Illustrative example

Final remarks

ranch-and-bound algorithm for NEP: 0000000000000000 Illustrative example

Final remarks

ranch-and-bound algorithm for NEP 000000000000000 Illustrative example

Final remarks

Main idea

イロト イロト イヨト イヨト 2 20 / 50

Main idea ●○○

Branch-and-bound algorithm for NEP

Illustrative examples

Final remarks 00

Main idea

<ロ><20/50 (0)、(2)/50 Main idea ●○○

Branch-and-bound algorithm for NEP

Illustrative examples

Final remarks

Branch-and-bound algorithm for NEP

Illustrative examples

Final remarks 00

Branch-and-bound algorithm for NEP: 00000000000000000 Illustrative examples

Final remarks

Branch-and-bound algorithm for NEP

Illustrative example: 000000000 Final remarks 00

Main idea

<ロ><目><一><一><一><一><一><一><一</td>20/50

Main idea ○●○ Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

A discarding criterion

Proposition (Kirst/Schwarze/St. 2024)

Given: boxes $X, Z \subseteq \Omega$. If there is at least one player ν with

•
$$\operatorname{pr}_{x^{-\nu}} X \subseteq \operatorname{pr}_{x^{-\nu}} Z$$
 and

•
$$\ell_{ heta_{
u}}(X) > u_{ heta_{
u}}(Z),$$

then X does not contain any Nash equilibria.

Main idea ○●○ Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

A discarding criterion

Proposition (Kirst/Schwarze/St. 2024)

Given: boxes $X, Z \subseteq \Omega$. If there is at least one player ν with

•
$$\operatorname{pr}_{x^{-\nu}} X \subseteq \operatorname{pr}_{x^{-\nu}} Z$$
 and

•
$$\ell_{\theta_{\nu}}(X) > u_{\theta_{\nu}}(Z),$$

then X does not contain any Nash equilibria.

Main question no. 1: How to construct suitable boxes Z?

Main idea ○○● Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

A discarding criterion

Unlike in B&B for global optimization, the source of Z cannot be (near) equilibrium points or boxes containing them.
Branch-and-bound algorithm

Algorithm 1: Branch-and-bound algorithm for nonconvex boxconstrained NEPs

Initialization: Put list $\mathcal{L} := \{\Omega\}$, list $\mathcal{N} := \{\Omega\}$;

while $\exists X' \in \mathcal{N}$ with diag $(X') > \tau$ do

Step 1: Choose largest box $X \in \mathcal{N}$ and remove it from \mathcal{N} ;

- Step 2: Divide X into X^1 and X^2 and append them to \mathcal{N} ;
- Step 3: Using \mathcal{L} , try to discard X^1 and X^2 from \mathcal{N} ;
- Step 4: Improve boxes from \mathcal{L} for discarding criterion;

Step 5: Optional fathoming step for \mathcal{L} ;

end

Branch-and-bound algorithm

Algorithm 1: Branch-and-bound algorithm for nonconvex boxconstrained NEPs

Initialization: Put list $\mathcal{L} := \{\Omega\}$, list $\mathcal{N} := \{\Omega\}$;

while $\exists X' \in \mathcal{N}$ with diag $(X') > \tau$ do

Step 1: Choose largest box $X \in \mathcal{N}$ and remove it from \mathcal{N} ;

Step 2: Divide X into X^1 and X^2 and append them to \mathcal{N} ;

Step 3: Using \mathcal{L} , try to discard X^1 and X^2 from \mathcal{N} ;

Step 4: Improve boxes from \mathcal{L} for discarding criterion;

Step 5: Optional fathoming step for \mathcal{L} ;

end

Branch-and-bound algorithm for NEPs

Illustrative exampl

Final remarks

Illustration of discarding step

25 / 50

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

Illustration of discarding step

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

Definition of the sub-lists

In every iteration and for every player ν we consider the sub-lists

$$\mathcal{L}_{\nu}(X^{1}) \ := \ \Big\{ Y \in \mathcal{L} \ \Big| \ \Big(\operatorname{pr}_{x^{-\nu}} Y \Big) \cap \Big(\operatorname{pr}_{x^{-\nu}} X^{1} \Big) \neq \emptyset \Big\}$$

of \mathcal{L} comprised of boxes that are of interest for player ν , since they may contain points which unilaterally improve points $x \in X^1$ in the player variable x^{ν} .

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

Illustration of discarding step

<ロ><目><一><一><一><一><一><一><一</td>27/50

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

Illustration of discarding step

Branch-and-bound algorithm

Algorithm 2: Step 3 of the branch-and-bound algorithm for nonconvex box-constrained NEPs

Step 3a: Try to discard box X^1 :

for
$$\nu = 1, \ldots, N$$
 do

Find
$$Y^{\nu} \in \mathcal{L}_{\nu}(X^{1})$$
 with $\ell_{\theta_{\nu}}(Y^{\nu}) = \min_{Y \in \mathcal{L}_{\nu}(X^{1})} \ell_{\theta_{\nu}}(Y)$;
With midpoint $(\hat{y}^{1}, \dots, \hat{y}^{N})$ of Y^{ν} put
 $Z^{\nu} := X_{1}^{1} \times \dots \times [\hat{y}^{\nu}, \hat{y}^{\nu}] \times \dots \times X_{N}^{1}$;
if $\ell_{\theta_{\nu}}(X^{1}) > u_{\theta_{\nu}}(Z^{\nu})$ then
 \mid Remove X^{1} from list \mathcal{N} ;
end

end

Step 3b: Proceed analogously for box X^2 ;

Branch-and-bound algorithm

Algorithm 1: Branch-and-bound algorithm for nonconvex boxconstrained NEPs

Initialization: Put list $\mathcal{L} := \{\Omega\}$, list $\mathcal{N} := \{\Omega\}$;

while $\exists X' \in \mathcal{N}$ with diag $(X') > \tau$ do

Step 1: Choose largest box $X \in \mathcal{N}$ and remove it from \mathcal{N} ;

- Step 2: Divide X into X^1 and X^2 and append them to \mathcal{N} ;
- Step 3: Using \mathcal{L} , try to discard X^1 and X^2 from \mathcal{N} ;
- Step 4: Improve boxes from \mathcal{L} for discarding criterion;
- Step 5: Optional fathoming step for \mathcal{L} ;

end

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

Improve boxes in list \mathcal{L}

Branch-and-bound algorithm for NEPs

Illustrative example

Final remarks

Improve boxes in list $\mathcal L$

Convergence property of the algorithm

Algorithm 1: Branch-and-bound algorithm for nonconvex boxconstrained NEPs

Initialization: Put list $\mathcal{L} := \{\Omega\}$, list $\mathcal{N} := \{\Omega\}$;

while $\exists X' \in \mathcal{N}$ with diag $(X') > \tau$ do

Step 1: Choose largest box $X \in \mathcal{N}$ and remove it from \mathcal{N} ;

- Step 2: Divide X into X^1 and X^2 and append them to \mathcal{N} ;
- Step 3: Using \mathcal{L} , try to discard X^1 and X^2 from \mathcal{N} ;
- Step 4: Improve boxes from \mathcal{L} for discarding criterion;

Step 5: Optional fathoming step for \mathcal{L} ;

end

Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

Convergence property of the algorithm

If in Step 2 the box X is halved along a longest edge, then Algorithm 1 terminates after finitely many steps with

$$E \subseteq \bigcup_{X\in\mathcal{N}} X.$$

Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

Convergence property of the algorithm

If in Step 2 the box X is halved along a longest edge, then Algorithm 1 terminates after finitely many steps with

$$E \subseteq \bigcup_{X\in\mathcal{N}} X.$$

Main question no. 2: How good is this approximation of E?

Branch-and-bound algorithm for NEPs

Illustrative examples

es Final remarks 00

Convergence property of the algorithm

Theorem (Kirst/Schwarze/St. 2024)

Given a convergent lower bounding procedure, consider the infinite branch-and-bound sequence generated by Algorithm 1 for $\tau = 0$ and put

 $E^k := \bigcup_{X \in \mathcal{N}_k} X,$

with \mathcal{N}_k denoting the list \mathcal{N} in iteration k.

Then with the Hausdorff distance δ we have $\lim_{k\to\infty} \delta(E^k, E) = 0$.

Inclusion of certain fathoming steps for \mathcal{L} is possible as well, but omitted here for ease of presentation.

Branch-and-bound algorithm for NEPs

Illustrative examples

s Final remarks

Convergence property of the algorithm

Unfortunately, using Algorithm 1 with au > 0 does not yield

 $\delta(E^k,E) \leq \tau$

for the final iterate k, but we simply stop with

 $\max_{X\in\mathcal{N}_k}\,\operatorname{diag}(X)\leq\tau,$

i.e., when the boxes in \mathcal{N}_k have sufficiently often been uniformly refined.

Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

Convergence property of the algorithm

Unfortunately, using Algorithm 1 with $\tau > 0$ does not yield

 $\delta(E^k, E) \le \tau$

for the final iterate k, but we simply stop with

 $\max_{X \in \mathcal{N}_k} \operatorname{diag}(X) \leq \tau,$

i.e., when the boxes in \mathcal{N}_k have sufficiently often been uniformly refined.

Main question no. 3: How to control the approximation quality?

The notion of ε -Nash equilibria

An ε -Nash equilibrium is a point $\bar{x} \in \Omega$ such that for all ν :

$$\theta_\nu(\bar{x}^\nu,\bar{x}^{-\nu}) \leq \theta_\nu(x^\nu,\bar{x}^{-\nu}) + \varepsilon \quad \text{ for all } \quad x^\nu \in \Omega_\nu \,.$$

This means that for each ν the point \bar{x}^{ν} is an ε -minimal point of

$$P_
u(ar{x}^{-
u}): \quad \min_{x^
u} \; heta_
u(x^
u,ar{x}^{-
u}) \quad ext{ s. t. } \quad x^
u \in \Omega_
u.$$

Let E_{ε} denote the set of all ε -Nash equilibria, and $E_{\varepsilon}^{<}$ the set of all strict ε -Nash equilibria, where the above inequalities hold strictly.

The notion of ε -Nash equilibria

An ε -Nash equilibrium is a point $\bar{x} \in \Omega$ such that for all ν :

$$heta_
u(ar{x}^
u,ar{x}^{-
u}) \leq heta_
u(x^
u,ar{x}^{-
u}) + arepsilon \quad ext{ for all } \quad x^
u \in \Omega_
u \,.$$

This means that for each ν the point \bar{x}^{ν} is an ε -minimal point of

$$\mathcal{P}_
u(ar{x}^{-
u}):=\min_{x^
u}\; heta_
u(x^
u,ar{x}^{-
u})\quad ext{s.t.}\quad x^
u\in\Omega_
u.$$

Let E_{ε} denote the set of all ε -Nash equilibria, and $E_{\varepsilon}^{<}$ the set of all strict ε -Nash equilibria, where the above inequalities hold strictly.

For the following we assume $\delta(E_{\varepsilon}^{<}, E_{\varepsilon}) = 0$.

Branch-and-bound algorithm for NEPs

Illustrative example

Inner approximation of $E_{arepsilon}^<$

We have

$$\max_{\nu} \left(u_{\theta_{\nu}}(X^{1}) - \min_{Y \in \mathcal{L}_{\nu}(X^{1})} \ell_{\theta_{\nu}}(Y) \right) < \varepsilon \quad \Rightarrow \quad X^{1} \subseteq E_{\varepsilon}^{<}$$

because all $x \in X^1$ satisfy for all ν

$$\theta_{\nu}(x^{\nu},x^{-\nu}) \leq u_{\theta_{\nu}}(X^{1}) < \min_{Y \in \mathcal{L}_{\nu}(X^{1})} \ell_{\theta_{\nu}}(Y) + \varepsilon \leq \min_{y^{\nu} \in \Omega_{\nu}} \theta_{\nu}(y^{\nu},x^{-\nu}) + \varepsilon.$$

Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

Inner approximation of $E_{\varepsilon}^{<}$

We have

$$\max_{\nu} \left(u_{\theta_{\nu}}(X^{1}) - \min_{Y \in \mathcal{L}_{\nu}(X^{1})} \ell_{\theta_{\nu}}(Y) \right) < \varepsilon \quad \Rightarrow \quad X^{1} \subseteq E_{\varepsilon}^{<}$$

because all $x \in X^1$ satisfy for all ν

$$heta_
u(x^
u,x^{-
u}) \leq u_{ heta_
u}(X^1) < \min_{Y\in\mathcal{L}_
u(X^1)} \ell_{ heta_
u}(Y) + arepsilon \leq \min_{y^
u\in\Omega_
u} heta_
u(y^
u,x^{-
u}) + arepsilon.$$

We collect such boxes in a list $\widetilde{\mathcal{N}}$ and obtain the chain of inclusions

$$\bigcup_{\widetilde{X}\in\widetilde{\mathcal{N}}}\widetilde{X} \subseteq E_{\varepsilon}^{<} \subseteq E_{\varepsilon} \subseteq \bigcup_{X\in\mathcal{N}}X.$$

Termination criterion

With an approximation tolerance $\tau > 0$ we wish to terminate for

$$\delta\left(\bigcup_{\widetilde{X}\in\widetilde{\mathcal{N}}}\widetilde{X},\bigcup_{X\in\mathcal{N}}X\right) \leq \tau.$$

Due to

$$\delta\left(\bigcup_{\widetilde{X}\in\widetilde{\mathcal{N}}}\widetilde{X},\bigcup_{X\in\mathcal{N}}X\right) \leq \max_{X\in\mathcal{N}}\min_{\widetilde{X}\in\widetilde{\mathcal{N}}}\|\Delta(X,\widetilde{X})\|_{2}$$

with

 $\Delta_i([\underline{a},\overline{a}],[\underline{b},\overline{b}]) := \max\{0,\underline{b}_i - \underline{a}_i,\overline{a}_i - \overline{b}_i\}, \quad i = 1, \dots, n,$ this follows from the tractable termination criterion $\max_{X\in\mathcal{N}}\min_{\widetilde{X}\in\widetilde{\mathcal{N}}}\|\Delta(X,\widetilde{X})\|_2 \leq \tau.$

37 / 50

Modified algorithm

These considerations lead to modifications of Algorithm 1 concerning

- the computation of strict and nonstrict ε-Nash equilibria,
- the maintenance of the additional list $\widetilde{\mathcal{N}}$,
- the more appropriate termination criterion.

Convergence properties of the modified algorithm

Theorem (Kirst/Schwarze/St. 2024)

Let a convergent lower bounding procedure and $\varepsilon > 0$ be given.

- a) For $E_{\varepsilon}^{<} \neq \emptyset$ and $\delta(E_{\varepsilon}, E_{\varepsilon}^{<}) = 0$ the modified algorithm with $\tau > 0$ terminates after a finite number of iterations with $\mathcal{N} \neq \emptyset$.
- b) For $E_{\varepsilon} = \emptyset$ the modified algorithm with $\tau > 0$ terminates after a finite number of iterations with $\mathcal{N} = \emptyset$.

Illustrative examples

Simple implementation:

- Python 3.10.8
- standard computer (Intel i7 processor, 3.60 GHz, 32 GB of RAM)
- lower bounding procedures based on centered forms (Krawczyk/Nickel 1982)

Four examples are tested:

- two players with unique equilibrium
- two players with multiple equilibria
- two players with no equilibrium
- a three dimensional instance

Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

Example from Krawczyk/Uryasev 2000

Objective functions:

$$\theta_1(x^1, x^2) = \theta_2(x^1, x^2) = \frac{(x^1 + x^2)^2}{4} + \frac{(x^1 - x^2)^2}{9}.$$

Strategy sets: $\Omega_1 = \Omega_2 = [-10, 10]$.

Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

Problem taken from Krawczyk/Uryasev 2000

Approximations of $E_{0.05}^{<}$ and $E_{0.05}$ by uniformly refining $\mathcal{N}\setminus\mathcal{N}$

Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

Example based on Beck/St. 2024

Objective functions:

$$egin{array}{rll} heta_1(x^1,x^2) &=& \displaystylerac{(x^1)^2}{2} - q(x^2)\cdot x^1, \ heta_2(x^1,x^2) &=& \displaystylerac{(x^2)^2}{2} - q(x^1)\cdot x^2 \end{array}$$

with $q(x) = (x - 4)^2 + 2$.

Strategy sets: $\Omega_1 = \Omega_2 = [0, 10]$.

Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

Example based on Beck/St. 2023

au= 0.005

Approximation of $E_{0.05}^{<}$ and $E_{0.05}$ by uniformly refining $\mathcal{N}\setminus\widetilde{\mathcal{N}}$

Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

Example based on Beck/St. 2023

au	k	$ \mathcal{N}\setminus\widetilde{\mathcal{N}} $	$ \widetilde{\mathcal{N}} $	$ \mathcal{L} $
0.05	7,145	3,355	0	22,837
0.02	22,872	11,155	0	73,201
0.01	52,782	28,847	709	174,794
0.005	129,132	71,376	11,810	444,998

Approximation of $E^{<}_{0.05}$ and $E_{0.05}$ by uniformly refining $\mathcal{N}\setminus\widetilde{\mathcal{N}}$

Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

Example based on Beck/St. 2023

Approximation of $E_{0.05}^{<}$ and $E_{0.05}$ by modified algorithm

(
$$k=121,520, \quad |\mathcal{N}\setminus\widetilde{\mathcal{N}}|=64,194, \quad |\widetilde{\mathcal{N}}|=6$$
)
Classical example in economics

(inspired by an economical situation, see Sagratella 2017, Ex. 1,2) Objective functions:

$$\begin{aligned} \theta_1(x^1, x^2) &= \frac{(x_1^1)^2}{2} + \frac{(x_2^1)^2}{2} + x_1^1 x_2^1 - x_1^1 x_1^2 - x_1^1 - x_2^1, \\ \theta_2(x^1, x^2) &= \frac{(x_1^2)^2}{2} + x_2^1 x_1^2 - x_1^2. \end{aligned}$$

Strategy sets: $\Omega_1 = [0,1]^2$, $\Omega_2 = [0,1]$.

Main idea

Branch-and-bound algorithm for NEPs

Illustrative examples

Final remarks

Classical example in economics

 $\tau = 0.1$

Approximation of $E_{0.01}^{<}$ and $E_{0.01}$ by modified algorithm

(
$$k=51,220$$
, $|\mathcal{N}\setminus\widetilde{\mathcal{N}}|=4,377$, $|\widetilde{\mathcal{N}}|=5$)

Final remarks

- Implementation is rather simple.
- Optional fathoming steps for *L* are included (Kirst/Schwarze/St. 2024), but not discussed here.
- Numerical results are so far only proof of concept, but method is to be tested on real-world applications (e.g. at WUR).
- Generalization to more complicated constraints and GNEPs is nontrivial and subject of our current research.

References

- M. Beck, O. Stein, Semi-infinite models for equilibrium selection, Minimax Theory and its Applications, Minimax Theory and its Applications, Vol. 9 (2024), 1-18.
- [2] P. Kirst, S. Schwarze, O. Stein, A branch-and-bound algorithm for non-convex Nash equilibrium problems, SIAM Journal on Optimization, to appear.
- [3] R. Krawczyk, K. Nickel, Die zentrische Form in der Intervallarithmetik, ihre quadratische Konvergenz und ihre Inklusionsisotonie, Computing, 28 (1982), 117-137.
- [4] J.B. Krawczyk, S. Uryasev, Relaxation algorithms to find Nash equilibria with economic applications, Environmental Modeling & Assessment, 5 (2000), 63-73.
- [5] S. Sagratella, Computing equilibria of Cournot oligopoly models with mixed-integer quantities, Mathematical Methods of Operations Research, 86 (2017), 549–565.