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A Nash equilibrium problem (based on Beck/St. 2024)

For convex quadratic functions g1, g» : Rt — R! consider the two
parametric problems

Pile): minx st ale)<x,

P2(X1) © min xp s.t. qg(Xl) < Xxo.
x2
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General problem definition

We consider Nash equilibrium problems of the following form:

m Finite number of players v =1,... N.
m Strategy sets are boxes Q, C R™.

m Each player v's objective function
9V291X...XQN—>R

is continuous.

m Each player v only controls her variables x¥ € Q,,
but her objective function also depends on all other players’
decisions (as parameters).

[ Putnzzyzln,, and Q:=Q; x ... x Qy C R".
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General problem definition

A Nash equilibrium is a point X = (x%,...,x") € Q such that for
each v =1,..., N the point X" is a global minimal point of the
parametric optimization problem

P,(x7"): min 0,(x",x7") s.t. x"€Q,.
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General problem definition

A Nash equilibrium is a point X = (x%,...,x") € Q such that for
each v =1,..., N the point X" is a global minimal point of the
parametric optimization problem

P,(x7"): min 0,(x",x7") s.t. x"€Q,.

The collection of the problems P,(x7"), v =1,..., N, with x € Q
is called Nash equilibrium problem (NEP).
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Literature review

Many algorithms for the determination of Nash equilibria require
convexity and smoothness assumptions on the functions 6,,.
Prominent solution approaches comprise

m the Karush-Kuhn-Tucker approach and
m the variational inequality approach.

In contrast, the
m Nikaido-Isoda approach

neither needs convexity nor differentiability. However, even smooth
convex #,'s lead to a nonsmooth nonconvex minimization problem.

F. Facchinei, C. Kanzow, Generalized Nash equilibrium problems, 40R, 5

(2007), 173-210.
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Literature review

So far spatial branch-and-bound methods for nonconvex continuous
NEPs have not been suggested. For discrete NEPs

(aka integer programming games,
M. Carvalho, G. Dragotto, A. Lodi, S. Sankaranarayanan, Integer Programming
Games: A Gentle Computational Overview, INFORMS TutORials in Operations

Research, to appear)

branch-and-prune (but not -bound) has been studied in

S. Sagratella, Computing all solutions of Nash equilibrium problems with
discrete strategy sets, SIOPT 26 (2016), 2190-2218

S. Schwarze, O. Stein, A branch-and-prune algorithm for discrete Nash
equilibrium problems, COAP 86 (2023), 491-519.
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Our nonconvex problem class

In our approach,

m strategy sets are boxes Q,, C R™ and, thus, convex,

m the players’ objective functions 6, : Q — R are continuous,
but not assumed to be convex (neither in x nor in x¥),

m the whole set E of Nash equilibria is approximated, not just a
single equilibrium.
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Bounding procedures

We require the availability of some convergent lower bounding
procedure, i.e. for a lower semi-continuous function f and a box
X C Q we can compute a lower bound

lr(X) < )ryei)rgf(x)

such that
li XKy = i in f
A ) = Jim T

holds for any exhaustive sequence of boxes (X*)xen.
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Bounding procedures

We require the availability of some convergent lower bounding
procedure, i.e. for a lower semi-continuous function f and a box
X C Q we can compute a lower bound

Le(X) < minf(x)

xeX
such that
li XKy = i in f
A ) = Jim T

holds for any exhaustive sequence of boxes (X*)xen.

Convergent upper bounding procedures are defined analogously.
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A discarding criterion

Proposition (Kirst/Schwarze/St. 2024)

Given: boxes X,Z C Q.

If there is at least one player v with
mpr,—». X C pr,— Z and
u EQU(X) > uol/(z)’

then X does not contain any Nash equilibria.
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A discarding criterion

Proposition (Kirst/Schwarze/St. 2024)

Given: boxes X,Z C Q.
If there is at least one player v with

mpr,—». X C pr,— Z and
| E@U(X) > UQV(Z),

then X does not contain any Nash equilibria.

Main question no. 1: How to construct suitable boxes Z7
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A discarding criterion

X2

L
-

X1

Unlike in B&B for global optimization, the source of Z cannot be

(near) equilibrium points or boxes containing them.
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Branch-and-bound algorithm

Algorithm 1: Branch-and-bound algorithm for nonconvex box-
constrained NEPs
Initialization: Put list £ := {Q}, list N := {Q};
while 3X’ € N with diag(X’) > 7 do
Step 1: Choose largest box X € N and remove it from N;
Step 2: Divide X into X! and X? and append them to N
Step 3: Using L, try to discard X' and X? from N;
Step 4: Improve boxes from L for discarding criterion;
Step 5: Optional fathoming step for L;
end
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Algorithm 1: Branch-and-bound algorithm for nonconvex box-
constrained NEPs
Initialization: Put list £ := {Q}, list N := {Q};
while 3X’ € N with diag(X’) > 7 do
Step 1: Choose largest box X € N and remove it from N;
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Step 3: Using L, try to discard X! and X? from \/;
Step 4: Improve boxes from L for discarding criterion;
Step 5: Optional fathoming step for L;
end
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Definition of the sub-lists

In every iteration and for every player v we consider the sub-lists
£,(xY) = {yer| (pre.y)n(pre. xt) £0}
of £ comprised of boxes that are of interest for player v, since they

may contain points which unilaterally improve points x € X! in the
player variable x".
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Branch-and-bound algorithm

Algorithm 2: Step 3 of the branch-and-bound algorithm for non-
convex box-constrained NEPs
Step 3a: Try to discard box X1:
forv=1,...,Ndo
Find Y” € L£,(X!) with £y, (Y") = minyeg,(x) Lo, (Y);
With midpoint (y%,...,y") of Y* put
ZV =X x o x [Py % x XR
if £y, (X) > ug,(Z") then
‘ Remove X! from list NV:
end
end
Step 3b: Proceed analogously for box X?;
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Branch-and-bound algorithm

Algorithm 1: Branch-and-bound algorithm for nonconvex box-
constrained NEPs
Initialization: Put list £ := {Q}, list N := {Q};
while 3X’ € N with diag(X’) > 7 do
Step 1: Choose largest box X € N and remove it from N;
Step 2: Divide X into X! and X? and append them to N\
Step 3: Using L, try to discard X' and X? from N;
Step 4: Improve boxes from L for discarding criterion;
Step 5: Optional fathoming step for L;
end
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Convergence property of the algorithm

Algorithm 1: Branch-and-bound algorithm for nonconvex box-
constrained NEPs
Initialization: Put list £ := {Q}, list N := {Q};
while 3X’ € N with diag(X’) > 7 do
Step 1: Choose largest box X € N and remove it from N;
Step 2: Divide X into X! and X? and append them to N
Step 3: Using L, try to discard X' and X? from N;
Step 4: Improve boxes from L for discarding criterion;
Step 5: Optional fathoming step for L;
end
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Convergence property of the algorithm

If in Step 2 the box X is halved along a longest edge, then
Algorithm 1 terminates after finitely many steps with

E C UX.

XeN
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Convergence property of the algorithm

If in Step 2 the box X is halved along a longest edge, then
Algorithm 1 terminates after finitely many steps with

E C UX.

XeN

Main question no. 2: How good is this approximation of E7
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Convergence property of the algorithm

Theorem (Kirst/Schwarze/St. 2024)

Given a convergent lower bounding procedure, consider the infinite
branch-and-bound sequence generated by Algorithm 1 for 7 =0

and put
EF = | X,
XeN

with N denoting the list N in iteration k.
Then with the Hausdorff distance § we have limy_,o, 6(EX, E) = 0.

Inclusion of certain fathoming steps for L is possible as well,
but omitted here for ease of presentation.
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Convergence property of the algorithm

Unfortunately, using Algorithm 1 with 7 > 0 does not yield
S(EKE) <t
for the final iterate k, but we simply stop with

diag(X) < T,
jmax diag(X) <7

i.e., when the boxes in N have sufficiently often been uniformly
refined.
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Convergence property of the algorithm

Unfortunately, using Algorithm 1 with 7 > 0 does not yield
S(EKE) <t
for the final iterate k, but we simply stop with

diag(X) < T,
jmax diag(X) <7

i.e., when the boxes in N have sufficiently often been uniformly
refined.

Main question no. 3: How to control the approximation quality?
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The notion of e-Nash equilibria

An e-Nash equilibrium is a point x € € such that for all v:

0,(x,x7") < 0,(x",x")+e forall x"eQ,.

This means that for each v the point X” is an e-minimal point of

P,(x7"): min 6,(x",X7") s.t. x"e€Q,.
Xl/

Let E. denote the set of all e-Nash equilibria, and E= the set of all
strict e-Nash equilibria, where the above inequalities hold strictly.
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The notion of e-Nash equilibria

An e-Nash equilibrium is a point x € € such that for all v:

0,(x,x7") < 0,(x",x")+e forall x"eQ,.

This means that for each v the point X” is an e-minimal point of

P,(x7"): min 6,(x",X7") s.t. x"e€Q,.
Xl/

Let E. denote the set of all e-Nash equilibria, and E= the set of all
strict e-Nash equilibria, where the above inequalities hold strictly.

For the following we assume ¢ (E=, E;) = 0.
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Inner approximation of E=

We have

max <u@V(X1) - YErgig@)&;y(Y)) <e = X'CES

because all x € X? satisfy for all v

0,(x",x7") < up,(XY) < min_ Ly (Y)+e < min 0,(y",x7")+e.

vecL,(xt) yreQ,
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Inner approximation of E=

We have

max <uey(X1) - Yergig@)&;y(Y)) <e = X'CES

because all x € X? satisfy for all v

0,(x",x7") < up,(XY) < min_ Ly (Y)+e < min 0,(y",x7")+e.

vecL,(xt) yreQ,

We collect such boxes in a list A7 and obtain the chain of inclusions
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Termination criterion

With an approximation tolerance 7 > 0 we wish to terminate for

) U)?,UX < T

XeN — XeN
Due to
5 X x| < in [|A(X, X
uxuy < rax min [A(X, X)ll2
XeN XeN
with

Ai([a, 3], [b, E]) = max{0, b; — a;,3; — B,-}, i=1,...
this follows from the tractable termination criterion

max min ||A(X X < T.
e min A X))z <
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Modified algorithm

These considerations lead to modifications of Algorithm 1
concerning

m the computation of strict and nonstrict e-Nash equilibria,
m the maintenance of the additional list /\7

m the more appropriate termination criterion.
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Convergence properties of the modified algorithm

Theorem (Kirst/Schwarze/St. 2024)

Let a convergent lower bounding procedure and € > 0 be given.
a) For EX # () and 0(E., ES) = 0 the modified algorithm with
7 > 0 terminates after a finite number of iterations with
N # 0.
b) For E. = () the modified algorithm with T > 0 terminates after
a finite number of iterations with N = ().
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[llustrative examples

Simple implementation:

= Python 3.10.8

m standard computer (Intel i7 processor, 3.60 GHz, 32 GB of
RAM)

m lower bounding procedures based on centered forms
(Krawczyk/Nickel 1982)

Four examples are tested:

m two players with unique equilibrium
m two players with multiple equilibria
m two players with no equilibrium

m a three dimensional instance
40 /50
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Example from Krawczyk/Uryasev 2000

Objective functions:

Hl(xl,xz) = (92(X1,X2) =

Strategy sets: Q; = Qp = [-10,10].
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Problem taken from Krawczyk/Uryasev 2000

T7=0.1 T = 0.05

Approximations of Ejys and Eggs by uniformly refining N\N
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Example based on Beck/St. 2024

Objective functions:

91(X1,X2) _ (X;)2 _ q(X2) . Xl,
1,2y _ (x*)? ol 1) 02
02(x*, x%) 5 q(x') - x

with g(x) = (x — 4)2 + 2.

Strategy sets: Q; = Q, = [0, 10].
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Example based on Beck/St. 2023

7 = 0.005
Approximation of Ezos and Eg s by uniformly refining N\N
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Example based on Beck/St. 2023

T kK INAN] WV £]
0.05| 7,145 3,355 0 22837
0.02 | 22,872 11,155 0 73201

0.01 | 52,782 28,847 709 174,794
0.005 | 129,132 71,376 11,810 444,998

Approximation of Ezos and Eg s by uniformly refining /\/'\./\7
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Example based on Beck/St. 2023

»
.

T =0.5
Approximation of Ej s and Egos by modified algorithm

(k=121520, [N\ N|=064194 |N|=6)
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Classical example in economics

(inspired by an economical situation, see Sagratella 2017, Ex. 1,2)

Objective functions:

2
X
nixtoy = O C8P s,
22
02(x1, x?) = (X; + xdx? — x2

Strategy sets: Q1 = [0,1]%, Q» = [0, 1].
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Classical example in economics

T =0.1
Approximation of Eg,; and Eg o1 by modified algorithm

(k=51220, |[N\N|=4377, |[N|=5)
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Final remarks

Implementation is rather simple.

Optional fathoming steps for £ are included
(Kirst/Schwarze/St. 2024), but not discussed here.

Numerical results are so far only proof of concept, but method
is to be tested on real-world applications (e.g. at WUR).

m Generalization to more complicated constraints and GNEPs is
nontrivial and subject of our current research.

49 /50



Final remarks
o] )

References

[1] M. Beck, O. Stein, Semi-infinite models for equilibrium selection,
Minimax Theory and its Applications, Minimax Theory and its
Applications, Vol. 9 (2024), 1-18.

[2] P. Kirst, S. Schwarze, O. Stein, A branch-and-bound algorithm for
non-convex Nash equilibrium problems, SIAM Journal on
Optimization, to appear.

[3] R. Krawczyk, K. Nickel, Die zentrische Form in der
Intervallarithmetik, ihre quadratische Konvergenz und ihre
Inklusionsisotonie, Computing, 28 (1982), 117-137.

[4] J.B. Krawczyk, S. Uryasev, Relaxation algorithms to find Nash
equilibria with economic applications, Environmental Modeling &
Assessment, 5 (2000), 63-73.

[5] S. Sagratella, Computing equilibria of Cournot oligopoly models
with mixed-integer quantities, Mathematical Methods of Operations
Research, 86 (2017), 549-565.

50 /50



	Introduction
	Main idea
	Branch-and-bound algorithm for NEPs
	Illustrative examples
	Final remarks

