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Introduction, Background, and Research Question

A dichotomy in electricity-market design: who makes unit-commitment decisions

U.S. markets have evolved towards centrally committed designs—the market operator (MO)
collects complex multi-part offers and solves unit-commitment problem to co-ordinate these
decisions

Other markets use self-committed designs—generators determine unit commitments
individually and MO clears demand against supply based on simple energy offers

Centralized commitment is more efficient if the auction is incentive-compatible
[Sioshansi et al., 2008b]

Research Question: How do the two market designs compare, accounting for incentive
properties?
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Self-Committed Design

max
∑

t∈T

[

(ωt − cv
i )xi,t − cf

i ui,t

]

s.t.0 ≤ bv
i ≤ b̄v

ui,t ∈ {0, 1}; ∀t ∈ T

(1)–(3)

where:

min
∑

j∈G,t∈T

bv
j xj,t (1)

s.t.
∑

j∈G

xj,t = Dt ; ∀t ∈ T (ωt) (2)

0 ≤ xj,t ≤ Kj uj,t ; ∀j ∈ G, t ∈ T (3)

Impose some standard assumptions

Transform bi-level self-committed model into
a single-level problem by replacing
lower-level market-clearing problem (1)–(3)
with its necessary and sufficient KKT
conditions
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Centrally Committed Design

max
∑

t∈T

[

(ηt − cv
i )xi,t − cf

i ui,t

]

s.t.0 ≤ bv
i ≤ b̄v

0 ≤ bf
i ≤ b̄f

(4)–(7)

where:

min
∑

j∈G,t∈T

(

bv
j xj,t + bf

j uj,t

)

(4)

s.t.
∑

j∈G

xj,t = Dt ; ∀t ∈ T (5)

0 ≤ xj,t ≤ Kj uj,t ; ∀j ∈ G, t ∈ T (6)

uj,t ∈ {0, 1}; ∀j ∈ G, t ∈ T ; (7)

Lower-level market-clearing problem (4)–(7)
is mixed-integer, so there are no simple
optimality conditions with which to convert
this to a single-level problem

Added Wrinkle: Centrally committed designs
use make-whole payments:

max

{

0,
∑

t∈T

[

(bv
i − ηt )xi,t + bf

i ui,t

]

}

to mitigate reported economic confiscation
[O’Neill et al., 2005, Sioshansi, 2014]
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General Approach [Huppmann and Siddiqui, 2018]

General mixed-binary problem:

minf (x , y)

s.t.h(x , y) = 0

g(x , y) ≤ 0

x ∈ R
n, y ∈ {0, 1}m

If we fix y = ȳ , KKT conditions for x are as
usual:

∇x f (x , ȳ) + λ⊤∇x h(x , ȳ) + µ⊤∇x g(x , ȳ) = 0

h(x , ȳ) = 0

g(x , ȳ) ≤ 0 ⊥ µ ≥ 0

Solution technique:
1 Enumerate all possible ȳ , gives a set Y
2 For each y ∈ Y find associated x∗(y),

λ∗(y), µ∗(y) using KKT conditions
3 Select the best x∗(y) & y

This gives a single-level mixed-binary
(usually nonlinear) problem, with the number
of auxiliary variables and KKT conditions
growing exponentially with m
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Previous Literature

Centralized commitment finds near-optimal solutions with different prices and generator profits
[Johnson et al., 1997, Sioshansi et al., 2008a, Sioshansi and Tignor, 2012]

Comparison of the two designs vis-à-vis supply and demand flexibility, resource remuneration,
and market power and efficiency [Ahlqvist et al., 2022]

Aforementioned works assume truthful revelation by generators

➥ Limited works that consider strategic offering behavior and incentive properties
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Key Findings

With symmetric duopoly and single operating period, the offer caps markets can be set so the
two designs are expected-cost equivalent [Sioshansi and Nicholson, 2011]

This equivalence breaks-down with multi-firm oligopoly, due to uniform-price requirement of a
self-committed design [Duggan, Jr. and Sioshansi, 2019]

➥ Price under self-committed design must be high enough for the marginal generator to recover its
fixed cost, which yields positive economic rents to inframarginal generator(s)

Higher cost and productive-efficiency losses of self-committed design with asymmetric firms

Discriminatory make-whole payment provides an additional degree of freedom for rent-seeking
behavior under centrally committed design
Under self-committed design, the only avenue for rent-seeking is to increase the uniform energy
price
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Contributions

Relax partially the symmetry assumption by allowing generators with different costs but same
capacities

Compute partial equilibrium—profit-maximizing offers for one firm, holding rival offers fixed

Capture multiple operating periods that are linked by long-lived offers

Key technical contribution: an efficient approach to solving profit-maximization for a centrally
committed market design
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Solution Approach
Overview

Because of symmetric-capacity assumption (Kj = K , ∀j ∈ G), an optimal solution to the MO’s
problem results in each generator being either:

inframarginal (xj,t = K ),
marginal (xj,t = rt ), or
inactive (xj,t = 0)

during each t ∈ T

Thus, generator i ’s optimal offers yields one of only 3|T | candidate production profiles

For each candidate production profile, x̂i , we have a necessary and sufficient constraint set,
Bx̂i

, which characterizes generator-i offers that make x̂i optimal in MO’s problem

For each candidate x̂i , solve an auxiliary problem with the constraint set, Bx̂i
, to determine

offers that yield x̂i as a production profile and resultant maximized profit
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Example
Non-Zero Rival Fixed Costs

Three firms, three time periods

Capacities: K = 20 MW

cf
i = $10, cv

i varies

Table: Cost Data

j cv
j cf

j

1 4 10
2 5 10

Table: Demand Data

t Dt

1 25
2 34
3 38
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Optimized Offers
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Firm-i Profit
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Operation Cost
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Total Profit
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Example
Zero Rival Fixed Costs

Three firms, three time periods

Capacities: K = 20 MW

cf
i = $10, cv

i varies

Table: Cost Data

j cv
j cf

j

1 5 0
2 6 0

Table: Demand Data

t Dt

1 25
2 34
3 38
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Optimized Offers
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Operation Cost
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Optimized Profit
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Computational Performance

Generate random instances of problem
with different numbers of firms, |G|, and
hours, |T |

Solve each with 12-hour time limit

Programmed using Python 3.7 and solved
with Gurobi 9.1.1

Computer with two 2.90-GHz cores and
16.0 GB memory

Table: Average Computation Time (s)

|G| |T | [Huppmann and Siddiqui, 2018] Proposed Algorithm

2 2 0.176 0.066
2 3 2.572 0.098
2 4 70.073 0.212
2 5 5827.641 0.319
3 2 5.167 0.086
3 3 1159.978 0.153
3 4 ∞ 0.296
3 5 ∞ 0.660
4 2 ∞ 0.061
4 3 ∞ 0.135
4 4 ∞ 0.275
4 5 ∞ 0.531
5 2 ∞ 0.068
5 3 ∞ 0.146
5 4 ∞ 0.302
5 5 ∞ 0.651
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To Summarize and Conclude

Self-committed designs appear to be more expensive to consumers and have greater
productive-efficiency losses

Firms exercise market power in a self-committed design solely through raising energy prices,
which are paid to everyone

Make-whole payments in centrally committed design give generators a discriminatory
mechanism for rent-seeking

Some unanswered questions:

How do these comparisons change with multiple profit-maximizing firms (i.e., complete
equilibrium)?
Absent a complete equilibrium, incorporate uncertainty into firm i ’s problem
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Thank you!
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